Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
[tex]x^2-5x-1=0\\\\
a=1,\ b=-5,\ c=-1\\\\
\Delta=b^2-4ac=(-5)^2-4*1*(-1)=25+4=29\\\\
\sqrt{\Delta}=\sqrt{29}\\\\
x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{29}}{2*1}=\frac{5-\sqrt{29}}{2}\\\\
x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{29}}{2*1}=\frac{5+\sqrt{29}}{2}\\
[/tex]
Answer:
The roots are [tex] \frac{5+\sqrt{29}}{2} [/tex] and [tex] \frac{5-\sqrt{29}}{2} [/tex]
Explanation:
The general form of the quadratic equation is:
ax² + bx + c = 0
The given equation is:
x² - 5x - 1 = 0
By comparison:
a = 1
b = -5
c = -1
To get the roots of the equation, we will use the quadratic formula shown in the attached image.
This means that:
either [tex] x = \frac{5+\sqrt{(-5)^2-4(1)(-1)}}{2(1)} = \frac{5+\sqrt{29}}{2} [/tex]
or [tex] x = \frac{5-\sqrt{(-5)^2-4(1)(-1)}}{2(1)} = \frac{5-\sqrt{29}}{2} [/tex]
Hope this helps :)
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.