At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
[tex]x^2-5x-1=0\\\\
a=1,\ b=-5,\ c=-1\\\\
\Delta=b^2-4ac=(-5)^2-4*1*(-1)=25+4=29\\\\
\sqrt{\Delta}=\sqrt{29}\\\\
x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{29}}{2*1}=\frac{5-\sqrt{29}}{2}\\\\
x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{29}}{2*1}=\frac{5+\sqrt{29}}{2}\\
[/tex]
Answer:
The roots are [tex] \frac{5+\sqrt{29}}{2} [/tex] and [tex] \frac{5-\sqrt{29}}{2} [/tex]
Explanation:
The general form of the quadratic equation is:
ax² + bx + c = 0
The given equation is:
x² - 5x - 1 = 0
By comparison:
a = 1
b = -5
c = -1
To get the roots of the equation, we will use the quadratic formula shown in the attached image.
This means that:
either [tex] x = \frac{5+\sqrt{(-5)^2-4(1)(-1)}}{2(1)} = \frac{5+\sqrt{29}}{2} [/tex]
or [tex] x = \frac{5-\sqrt{(-5)^2-4(1)(-1)}}{2(1)} = \frac{5-\sqrt{29}}{2} [/tex]
Hope this helps :)
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.