Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
[tex]x^2-5x-1=0\\\\
a=1,\ b=-5,\ c=-1\\\\
\Delta=b^2-4ac=(-5)^2-4*1*(-1)=25+4=29\\\\
\sqrt{\Delta}=\sqrt{29}\\\\
x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{29}}{2*1}=\frac{5-\sqrt{29}}{2}\\\\
x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{29}}{2*1}=\frac{5+\sqrt{29}}{2}\\
[/tex]
Answer:
The roots are [tex] \frac{5+\sqrt{29}}{2} [/tex] and [tex] \frac{5-\sqrt{29}}{2} [/tex]
Explanation:
The general form of the quadratic equation is:
ax² + bx + c = 0
The given equation is:
x² - 5x - 1 = 0
By comparison:
a = 1
b = -5
c = -1
To get the roots of the equation, we will use the quadratic formula shown in the attached image.
This means that:
either [tex] x = \frac{5+\sqrt{(-5)^2-4(1)(-1)}}{2(1)} = \frac{5+\sqrt{29}}{2} [/tex]
or [tex] x = \frac{5-\sqrt{(-5)^2-4(1)(-1)}}{2(1)} = \frac{5-\sqrt{29}}{2} [/tex]
Hope this helps :)

Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.