Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

A pool is being drained at a constant rate. The amount of water is a function of the number of minutes the pool has been draining, as shown in the table. Write an equation in slope-intercept form that represents the function. Then find the water in the pool after two and a half hours. 
Time (mi)       12--------20------50
Volumne (gal) 4962--4754--3974


Sagot :

davy94

Answer:

Using the first two values in the table, we can first find the slope to write an equation of a line, so we have

[4754 - 4962 ] / [20 - 12 ] = -26

So we have

y - 4754 = -26(x - 20)  

y - 4754  = -26x + 520

y = -26x + 5274

Let's confirm that the amount after 50 minutes is correct

y = -26(50) + 5274  = 3974

So after  2 + 1/2 hrs  (150 min) we have

y = -26(150) + 5274  = 1374 gallons

Step-by-step explanation:

The equation in the slope-intercept form is [tex]y=-26x+5274[/tex] and there will be [tex]1374[/tex] gallons of water in the pool after [tex]2[/tex] and a half hours.

The equation of a line that passes through two points [tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex] is [tex](y-y_1)=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex].

Take points [tex](12, 4962)[/tex] and [tex](20, 4754)[/tex].

Here, [tex]x_1=12, y_1=4962, x_2=20, y_2=4754[/tex].

The equation is :

[tex](y-4962)=\frac{4754-4962}{20-12}(x-12)[/tex]

[tex](y-4962)=\frac{-208}{8}(x-12)[/tex]

[tex]8(y-4962)=-208(x-12)[/tex]

[tex]8y-39696=-208x+2496[/tex]

[tex]208x+8y-39696-2496=0[/tex]

[tex]208x+8y-42192=0[/tex]

[tex]8y=-208x+42192[/tex]

[tex]y=-\frac{208}{8}x+\frac{42192}{8}[/tex]

[tex]y=-26x+5274.[/tex]

The slope intercept form is [tex]y=mx+c[/tex], where [tex]m[/tex] is the slope and [tex]c[/tex] is the [tex]y[/tex]-intercept.

After [tex]2[/tex] and a half hours or [tex]150[/tex] minutes.

Put [tex]x=150[/tex] in the equation [tex]y=-26x+5274.[/tex]

[tex]y=-26\times 150+5274[/tex]

[tex]y=-3900+5274[/tex]

[tex]y=1374[/tex]

So, there will be [tex]1374[/tex] gallons of water in the pool after [tex]2[/tex] and a half hours.

Learn more about slope-intercept form here:

https://brainly.com/question/21366542?referrer=searchResults