Answered

Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

A farmer is putting up a fence for her animals. She orginally had the fence enclosing a square was 18ft by 18ft. Suppose she uses the same amount of fencing to enclose a circular area. What is the area of the circle?

Sagot :

First look: More than 324 square feet :)
Now, [tex]l=2\pi*r[/tex] which means that [tex]r=\frac{l}{2\pi}[/tex]. But l is the original perimeter, 4 times the side of the square, that is, 72 ft. So, [tex]r=\frac{72}{2\pi}=\frac{36}{\pi}[/tex]
Now, the area of that circle is [tex]A=\pi*r^2=\pi*\frac{1296}{\pi^2}=\frac{1296}{\pi}[/tex], which is about 412.5 square feet. It's true, that's more (that's the most you can actually get with that amount of fence :) )
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.