Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

A 0.160 kg ball attached to a light cord is swung in a vertical circle of radius 70.0 cm. At the top of the swing, the speed of the ball is 3.26 m/s. The centre of the circle is 1.50 m above the floor.
Calculate the speed of the ball when the cord is 30.0̊ below the horizontal.


Sagot :

When the cord carrying the ball is at 30 deg below horizontal, the ball is at
       1.5 m - 0.70 sin 30 = 1.15 meters above ground

Energy of the ball at the topmost point of swing :
       KE + PE  = 1/2 m v² + m g h
      = 1/2 0.160 3.26²  +  0.160 * 9.81 * (1.50 + 0.70)  = 8.767 Joules
Energy of the ball when the cord at 30 deg from horizontal
       = 1/2 m V² + m g h  =
       = 1/2 * 0.160 V² + 0.160 * 9.81 * 1.15 = 0.08V² + 1.805 Joules

Conservation of energy :  0.08 V² + 1.805 = 8.767
         V² = 87.025

 V = 9.329 m/sec


Answer:

The speed of the ball is 5.59 m/s.

Explanation:

Given that,

Mass = 0.160 kg

Radius = 70 cm =0.70 m

Distance = 1.50

Speed at top = 3.26 m/s

Angle = 30.0°

We need to calculate the speed of the ball

The total energy at the top

[tex]K.E_{i}+P.E=\dfrac{1}{2}mv_{i}^2+mgh[/tex]

The final kinetic energy of ball at that point when the cord is 30° below the horizontal

[tex]K.E_{f}=\dfrac{1}{2}mv_{f}^{2}[/tex]

Using conservation of energy

[tex]K.E_{f}=K.E_{i}+P.E[/tex]

[tex]\dfrac{1}{2}mv_{f}^2=\dfrac{1}{2}mv_{i}^2+mgh[/tex]

[tex]\dfrac{1}{2}\times0.160\times v_{f}^2=\dfrac{1}{2}\times0.160\times(3.26)^2+0.160\times9.8\times(0.70+0.70\times\sin30^{\circ})[/tex]

[tex]v_{f}=\sqrt{(3.26)^2+2\times9.8\times1.05}[/tex]

[tex]v_{f}=5.59\ m/s[/tex]

Hence, The speed of the ball is 5.59 m/s.

Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.