Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
8) Absolute value is the distance from zero on a number line (and has no reference to which direction left/right from zero), so this means the value is always positive:
abs(2) = 2
abs(-2) = 2
9) Solve the equation for x
(3x + y)/z = 2
*multiply both sides by z
(3x + y) = 2z
*subtract y from both sides
3x = 2z - y
*divide both sides by 3
x = (2z - y)/3
10) Which point is a solution to the equation 6x - 5y = 4? Justify your choice
A. (1, 2)
B. (1, -2)
C. (-1, -2)
D. (-1, 2)
*plug (x, y) coordinates into equation and see if the result is a valid equation:
*start with A. (1, 2):
6(1) - 5(2) = 4
6 - 10 = 4
-4 = 4 [NO GOOD]
*now try B. (1, -2):
6(1) - 5(-2) = 4
6 - (-10) = 4
6 + 10 = 4
16 = 4 [NO GOOD]
*now try C. (-1, -2):
6(-1) - 5(-2) = 4
-6 - (-10) = 4
-6 + 10 = 4
4 = 4 [OK]
*just for fun let's also verify D. (-1, 2) is not the solution, since we found that C. was:
6(-1) - 5(2) = 4
-6 - 10 = 4
-16 = 4 [NO GOOD]
The answer is C. (-1, -2) (and the justification is that we solved for it to be true)
11) Domain is all values 'x' (i.e. input)
Range is all values 'y' (i.e. output)
a.) y = 2x + 1 is a line with a slope of 2:1 (vert:horiz) and a y-intercept of y = 1, but because it is a line, it extends from -infinty to +infinity for both 'x' and 'y', so . .
Domain = (-infinity ≤ x ≤ +infinity)
Range = (-infinity ≤ y ≤ +infinity)
b.) This table on shows discrete values of input/output, so the domain/range is also discrete . .
Domain = (3, 7, 11)
Range = (-1, -3, -5)
c.) Just from visual confirmation of the plot's extents . .
Domain = (-5 ≤ x ≤ 5)
Range = (-1 ≤ y ≤ 1)
d.) Again using visual confirmation of the plot's extents . .
Domain = (-2 ≤ x ≤ 2) *note extents are limited by vertical asymptote
Range = (-infinity ≤ y ≤ +infinity)
12) There are 2 lines of symmetry (they are the vertical line drawn at x = 0, and the horizontal line drawn at y = 0 that bisect the ellipse)
abs(2) = 2
abs(-2) = 2
9) Solve the equation for x
(3x + y)/z = 2
*multiply both sides by z
(3x + y) = 2z
*subtract y from both sides
3x = 2z - y
*divide both sides by 3
x = (2z - y)/3
10) Which point is a solution to the equation 6x - 5y = 4? Justify your choice
A. (1, 2)
B. (1, -2)
C. (-1, -2)
D. (-1, 2)
*plug (x, y) coordinates into equation and see if the result is a valid equation:
*start with A. (1, 2):
6(1) - 5(2) = 4
6 - 10 = 4
-4 = 4 [NO GOOD]
*now try B. (1, -2):
6(1) - 5(-2) = 4
6 - (-10) = 4
6 + 10 = 4
16 = 4 [NO GOOD]
*now try C. (-1, -2):
6(-1) - 5(-2) = 4
-6 - (-10) = 4
-6 + 10 = 4
4 = 4 [OK]
*just for fun let's also verify D. (-1, 2) is not the solution, since we found that C. was:
6(-1) - 5(2) = 4
-6 - 10 = 4
-16 = 4 [NO GOOD]
The answer is C. (-1, -2) (and the justification is that we solved for it to be true)
11) Domain is all values 'x' (i.e. input)
Range is all values 'y' (i.e. output)
a.) y = 2x + 1 is a line with a slope of 2:1 (vert:horiz) and a y-intercept of y = 1, but because it is a line, it extends from -infinty to +infinity for both 'x' and 'y', so . .
Domain = (-infinity ≤ x ≤ +infinity)
Range = (-infinity ≤ y ≤ +infinity)
b.) This table on shows discrete values of input/output, so the domain/range is also discrete . .
Domain = (3, 7, 11)
Range = (-1, -3, -5)
c.) Just from visual confirmation of the plot's extents . .
Domain = (-5 ≤ x ≤ 5)
Range = (-1 ≤ y ≤ 1)
d.) Again using visual confirmation of the plot's extents . .
Domain = (-2 ≤ x ≤ 2) *note extents are limited by vertical asymptote
Range = (-infinity ≤ y ≤ +infinity)
12) There are 2 lines of symmetry (they are the vertical line drawn at x = 0, and the horizontal line drawn at y = 0 that bisect the ellipse)
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.