Answered

Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

1. Give an example of a repeating decimal where two digits repeat. Explain why your number is a rational number.

2. Explain why any rational number is either a terminating or repeating decimal.

3. Write two decimals, one repeating and one terminating, with values between 0 and 1. Then write an inequality that shows the relationship between your two decimals.

4. Find the decimal equivalent for the fraction of students with three siblings. (Fraction of students: [tex]\frac{1}{6} [/tex]).


Sagot :

frika

1. A repeating decimal is a decimal number that eventually takes on a repeating pattern of digits after its decimal point that will continue forever. For example, 17.(23)=17.23232323232323....


2. A decimal number that has digits that do not go on forever is called terminating decimal. Any rational number (that is, a fraction in lowest terms) can be written as either a terminating decimal or a repeating decimal . Just divide the numerator by the denominator . If you end up with a remainder of 0, then you have a terminating decimal. Otherwise, the remainders will begin to repeat after some point, and you have a repeating decimal.


3. Repeating decimal between 0 and 1: 0.(987)=0.987987987987...

Terminating number between 0 and 1: 0.987

0.(987) >0.987.


4. When dividing 1 by 6 you can get 0.1666666666...=0.1(6).

We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.