Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
On the surface, it seems easy. Can you think of the integers for x, y, and z so that x³+y³+z³=8? Sure. One answer is x = 1, y = -1, and z = 2. But what about the integers for x, y, and z so that x³+y³+z³=42?
That turned out to be much harder—as in, no one was able to solve for those integers for 65 years until a supercomputer finally came up with the solution to 42. (For the record: x = -80538738812075974, y = 80435758145817515, and z = 12602123297335631. Obviously.)
Now, if we go up to ax³+bx²+cx+d=0, a closed form for “x=” is possible to find, although it’s much bulkier than the quadratic version. It’s also possible, yet ugly, to do this for degree 4 polynomials ax⁴+bx³+cx²+dx+f=0.
Remember the quadratic formula? Given ax²+bx+c=0, the solution is x=(-b±√(b^2-4ac))/(2a), which may have felt arduous to memorize in high school, but you have to admit is a conveniently closed-form solution.
It’s a simple one to write. There are many trios of integers (x,y,z) that satisfy x²+y²=z². These are known as the Pythagorean Triples, like (3,4,5) and (5,12,13). Now, do any trios (x,y,z) satisfy x³+y³=z³? The answer is no, and that’s Fermat’s Last Theorem.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.