Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Question:
A population consists 1, 2, 4, 5, 8. Draw all possible samples of size 2 without replacement from this population.
Verify that the sample mean is an unbiased estimate of the population mean.
Answer:
[tex]Samples: \{(1,2),(1,4),(1,5),(1,8),(2,4),(2,5),(2,8),(4,5),(4,8),(5,8)\}[/tex]
[tex]\hat p = \frac{3}{5}[/tex] --- proportion of evens
The sample mean is an unbiased estimate of the population mean.
Step-by-step explanation:
Given
[tex]Numbers: 1, 2, 4, 5, 8[/tex]
Solving (a): All possible samples of 2 (W.O.R)
W.O.R means without replacement
So, we have:
[tex]Samples: \{(1,2),(1,4),(1,5),(1,8),(2,4),(2,5),(2,8),(4,5),(4,8),(5,8)\}[/tex]
Solving (b): The sampling distribution of the proportion of even numbers
This is calculated as:
[tex]\hat p = \frac{n(Even)}{Total}[/tex]
The even samples are:
[tex]Even = \{2,4,8\}[/tex]
[tex]n(Even) = 3[/tex]
So, we have:
[tex]\hat p = \frac{3}{5}[/tex]
Solving (c): To verify
[tex]Samples: \{(1,2),(1,4),(1,5),(1,8),(2,4),(2,5),(2,8),(4,5),(4,8),(5,8)\}[/tex]
Calculate the mean of each samples
[tex]Sample\ means = \{1.5,2.5,3,4.5,3,3.5,5,4.5,6,6.5\}[/tex]
Calculate the mean of the sample means
[tex]\bar x = \frac{1.5 + 2.5 +3 + 4.5 + 4 + 3.5 + 5 + 4.5 + 6 + 6.5}{10}[/tex]
[tex]\bar x = \frac{40}{10}[/tex]
[tex]\bar x = 4[/tex]
Calculate the population mean:
[tex]Numbers: 1, 2, 4, 5, 8[/tex]
[tex]\mu = \frac{1 +2+4+5+8}{5}[/tex]
[tex]\mu = \frac{20}{5}[/tex]
[tex]\mu = 4[/tex]
[tex]\bar x = \mu = 4[/tex]
This implies that [tex]\bar x[/tex] is an unbiased estimate of the [tex]\mu[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.