Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
ΔXOY ≅ ΔZOW ⇒ proved down
Step-by-step explanation:
* Lets study some facts on the circle
- If two chords equidistant from the center of the circles,
then they are equal in length
* the meaning of equidistant is the perpendicular distances
from the center of the circle to the chords are equal in length
* Lets check this fact in our problem
∵ XY and WZ are two chords in circle O
∵ OT ⊥ XY
- OT is the perpendicular distance from the center to the chord XY
∵ OU ⊥ WZ
- OU is the perpendicular distance from the center to the chord WZ
∵ OT ≅ OU
- The two chords equidistant from the center of the circle
∴ The two chords are equal in length
∴ XY ≅ WZ
* Now in the two triangles XOY and ZOW , to prove that
they are congruent we must find one of these cases:
1- SSS ⇒ the 3 sides of the 1st triangle equal the corresponding
sides in the 2nd triangle
2- SAS ⇒ the two sides and the including angle between them
in the 1st triangle equal to the corresponding sides and
including angle in the 2nd triangle
3- AAS ⇒ the two angles and one side in the 1st triangle equal the
corresponding angles and side in the 2nd triangle
* Lets check we will use which case
- In the two triangles XOY and ZOW
∵ XY = ZW ⇒ proved
∵ OX = OZ ⇒ radii
∵ OY = OW ⇒ radii
* This is the first case SSS
∴ ΔXOY ≅ ΔZOW
Step-by-step explanation:
* Lets study some facts on the circle
- If two chords equidistant from the center of the circles,
then they are equal in length
* the meaning of equidistant is the perpendicular distances
from the center of the circle to the chords are equal in length
* Lets check this fact in our problem
∵ XY and WZ are two chords in circle O
∵ OT ⊥ XY
- OT is the perpendicular distance from the center to the chord XY
∵ OU ⊥ WZ
- OU is the perpendicular distance from the center to the chord WZ
∵ OT ≅ OU
- The two chords equidistant from the center of the circle
∴ The two chords are equal in length
∴ XY ≅ WZ
* Now in the two triangles XOY and ZOW , to prove that
they are congruent we must find one of these cases:
1- SSS ⇒ the 3 sides of the 1st triangle equal the corresponding
sides in the 2nd triangle
2- SAS ⇒ the two sides and the including angle between them
in the 1st triangle equal to the corresponding sides and
including angle in the 2nd triangle
3- AAS ⇒ the two angles and one side in the 1st triangle equal the
corresponding angles and side in the 2nd triangle
* Lets check we will use which case
- In the two triangles XOY and ZOW
∵ XY = ZW ⇒ proved
∵ OX = OZ ⇒ radii
∵ OY = OW ⇒ radii
* This is the first case SSS
∴ ΔXOY ≅ ΔZOW
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.