Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Given:
The speed is 64 feet per second.
The height of the high cliff is 80 feet.
The function is
[tex]H(t)=-16t^2+64t+80[/tex]a)
We need to find the maximum value of t in the given function to find a time when the rock reaches its maximum height.
Differentiate the given equation, we get
[tex]H^{\prime}(t)=-16(2t)^{}+64[/tex][tex]H^{\prime}(t)=-32t^{}+64[/tex]Set H'(t)=0 and solve for t.
[tex]0=-32t^{}+64[/tex]Adding 32t on both sides, we get
[tex]0+32t^{}=-32t+64+32t[/tex][tex]32t^{}=64[/tex]Dividing both sides by 32, we get
[tex]\frac{32t}{32}^{}=\frac{64}{32}[/tex][tex]t=2[/tex]Hence the rock reaches its maximum height after 2 seconds.
b)
Substitute t=2 in the given equation to find the maximum height of the rock.
[tex]H(2)=-16(2)^2+64(2)+80[/tex][tex]H(2)=144[/tex]Hence the maximum height obtained by the rock is 144 feet above sea level.
c)
Substitute H(t)=0 in the given function to find the time when the rock hit the ocean.
[tex]0=-16t^2+64t+80[/tex]Dividing both sides by (-16), we get
[tex]0=-\frac{16t^2}{-16}+\frac{64t}{-16}+\frac{80}{-16}[/tex][tex]0=t^2-4t-5[/tex][tex]t^2-4t-5=0[/tex][tex]t^2+t-5t-5=0[/tex][tex]t(t+1)-5(t+1)=0[/tex][tex](t+1)(t-5)=0[/tex][tex](t+1)=0,(t-5)=0[/tex][tex]t=-1,t=5[/tex]Omitting the negative value, we get t= 5 seconds.
Hence the rock hits the ocean after 5 seconds.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.