Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Options for the first box are: One valid solution, two valid solutions Options for the second box are: no extraneous solutions, one extraneous solution Options for the third box: 5, 0, 2, 4

Options For The First Box Are One Valid Solution Two Valid Solutions Options For The Second Box Are No Extraneous Solutions One Extraneous Solution Options For class=

Sagot :

ANSWER

The equation has one valid solution and one extraneous solution.

A valid solution for x is 5

[tex]\sqrt[]{x-1}-5=x-8[/tex]

Add 5 to both-side of the equation

[tex]\sqrt[]{x-1}-5+5=x-8+5[/tex][tex]\sqrt[]{x-1}=x-3[/tex]

Take the square of both-side

[tex]x-1=(x-3)^2[/tex]

x - 1=x²-6x + 9

Rearrange

x² - 6x + 9 - x + 1 =0

x² - 7x + 10 = 0

We can solve the above quadratic equation using factorization method

x² - 5x - 2x + 10 = 0

x(x-5) - 2(x - 5) = 0

(x-5)(x-2)=0

Either x -5 =0 OR x-2 =0

Either x =5 or x=2

To check whether the equation is valid or non-extraneous, let's plug the values into the equation and see if it gives a true statement

For x =5

[tex]\sqrt[]{5-1}-5=5-8[/tex]

[tex]\sqrt[]{4}-5=-3[/tex][tex]-3=-3[/tex]

The above is a true statement

For x =2

[tex]\sqrt[]{2-1}-5=2-8[/tex][tex]1-5=2-8[/tex]

The above is not a true statement

Therefore, the equation has one valid solution and one extraneous solution.

A valid solution for x is 5