Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

I have a practice question that I need explained and answered. Thank you - Rose

I Have A Practice Question That I Need Explained And Answered Thank You Rose class=

Sagot :

To determine the x - coordinate of the distance between two points:

[tex]d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

The distance between the two points is estimated using the above formular

[tex]\begin{gathered} x_2=4 \\ x_1=?_{} \\ y_1=-1 \\ y_2=9 \\ d=6\sqrt[]{6} \end{gathered}[/tex][tex]\begin{gathered} d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \\ 6\sqrt[]{6}=\sqrt[]{(x-4)^2+(9--1)^2} \\ \text{square both side } \\ (6\sqrt[]{6)^2}=(\sqrt[]{(x-4)^2+10^2})^2 \\ 216=(x-4)^2+100 \\ 216-100=(x-4)^2 \end{gathered}[/tex][tex]\begin{gathered} 116=(x-4)(x-4) \\ 116=x^2-8x+16 \\ 100=x^2-8x \\ x^2-8x-100=0 \end{gathered}[/tex]

Solve using quadratic formular

[tex]\frac{-b\pm\sqrt[]{b^2}-4ac}{2a}[/tex][tex]\begin{gathered} \frac{-b\pm\sqrt[]{b^2}-4ac}{2a}\ldots..\text{ a= 1 , b = -8 , c = -100} \\ \frac{-(-8)\pm\sqrt[]{(-8)^2-4(1)(-100)}}{2(1)} \\ \frac{8\pm\sqrt[]{64+400}}{2} \\ \frac{8\pm\sqrt[]{464}}{2}=\frac{8\pm4\sqrt[]{29}}{2} \\ \frac{2(4\pm2\sqrt[]{29)}}{2}=4\pm2\sqrt[]{29} \end{gathered}[/tex]

Therefore the correct answer for the x - coordinates are:

[tex]\begin{gathered} x=4+2\sqrt[]{29}\text{ and } \\ x_{}=4-2\sqrt[]{29} \end{gathered}[/tex]

We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.