Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Given the equation of the line below,
[tex]8y-16=5x[/tex]If the line passes through the point,
[tex](5,-5)[/tex]Re-writing the eqaution of the line in slope intercept form,
[tex]\begin{gathered} 8y-16=5x \\ 8y=5x+16 \\ \text{Divide both sides by 8} \\ y=\frac{5x}{8}+\frac{16}{2} \\ y=\frac{5}{8}x+2 \end{gathered}[/tex]The slope of the perpendicular line is the negative reciprocal of the slope of the eqaution of the line in the slope-intercept form given above
The general form of the slope-intercept form of the equation of a straight line is,
[tex]\begin{gathered} y=mx+c \\ \text{Where m is the slope} \\ y=\frac{5}{8}x+2 \\ m=\frac{5}{8} \\ \text{Slope of the perpendicular line is} \\ m_1=-\frac{1}{m} \\ m_{1_{}}=-\frac{1}{\frac{5}{8}}=-1\times\frac{8}{5}=-\frac{8}{5} \end{gathered}[/tex]The formula to find the equation of a line with point (5, -5) below is,
[tex]\begin{gathered} \frac{y-y_1}{x-x_1}=m_1 \\ \text{Where} \\ (x_1,y_1)=(5,-5) \\ m_1=-\frac{8}{5} \end{gathered}[/tex]Substitute the values into the formula of the eqaution of a straight line,
[tex]\begin{gathered} \frac{y-(-5)}{x-5}=-\frac{8}{5} \\ \frac{y+5}{x-5}=-\frac{8}{5} \\ \text{Crossmultiply} \\ 5(y+5)=-8(x-5) \\ 5y+25=-8x+40 \\ \text{Collect like terms} \\ 5y=-8x+40-25 \\ 5y=-8x+15 \\ \text{Divide both sides by 5} \\ \frac{5y}{5}=-\frac{8}{5}x+\frac{15}{5} \\ y=-\frac{8}{5}x+3 \end{gathered}[/tex]Hence, the right option is C
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.