At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Solve for [tex]\( x \)[/tex]:

[tex]\[ 3x = 6x - 2 \][/tex]

---

Which function best shows the relationship between [tex]\( n \)[/tex] and [tex]\( f(n) \)[/tex]?

[tex]\[
\begin{array}{|c|c|}
\hline
n & f(n) \\
\hline
1 & 16 \\
\hline
2 & 8 \\
\hline
3 & 4 \\
\hline
4 & 2 \\
\hline
\end{array}
\][/tex]

A. [tex]\( f(n) = 16(0.5)^{n-1} \)[/tex]

Sagot :

To determine the function that best represents the relationship between [tex]\( n \)[/tex] (the number of time intervals) and [tex]\( f(n) \)[/tex] (the amount of chlorine remaining), we need to examine the given data. The data provides the following values:

[tex]\[ \begin{tabular}{|l|l|} \hline n & f(n) \\ \hline 1 & 16 \\ \hline 2 & 8 \\ \hline 3 & 4 \\ \hline 4 & 2 \\ \hline \end{tabular} \][/tex]

From this data, we can infer the pattern and check if a potential function fits the given values.

The values of [tex]\( f(n) \)[/tex] decrease by a factor of 2 as [tex]\( n \)[/tex] increases by 1. This suggests that the amount of chlorine is halved each time period.

We propose a function of the form:

[tex]\[ f(n) = 16 \cdot (0.5)^{n-1} \][/tex]

Let's verify this function step-by-step with the given values of [tex]\( n \)[/tex]:

1. For [tex]\( n = 1 \)[/tex]:
[tex]\[ f(1) = 16 \cdot (0.5)^{1-1} = 16 \cdot (0.5)^0 = 16 \cdot 1 = 16 \][/tex]
This matches the value [tex]\( f(1) = 16 \)[/tex].

2. For [tex]\( n = 2 \)[/tex]:
[tex]\[ f(2) = 16 \cdot (0.5)^{2-1} = 16 \cdot (0.5)^1 = 16 \cdot 0.5 = 8 \][/tex]
This matches the value [tex]\( f(2) = 8 \)[/tex].

3. For [tex]\( n = 3 \)[/tex]:
[tex]\[ f(3) = 16 \cdot (0.5)^{3-1} = 16 \cdot (0.5)^2 = 16 \cdot 0.25 = 4 \][/tex]
This matches the value [tex]\( f(3) = 4 \)[/tex].

4. For [tex]\( n = 4 \)[/tex]:
[tex]\[ f(4) = 16 \cdot (0.5)^{4-1} = 16 \cdot (0.5)^3 = 16 \cdot 0.125 = 2 \][/tex]
This matches the value [tex]\( f(4) = 2 \)[/tex].

Since the proposed function [tex]\( f(n) = 16 \cdot (0.5)^{n-1} \)[/tex] correctly produces the given values for [tex]\( f(n) \)[/tex] at [tex]\( n = 1, 2, 3, \)[/tex] and [tex]\( 4 \)[/tex], we can confirm that this is the function that best describes the relationship.

Thus, the function that best shows the relationship between [tex]\( n \)[/tex] and [tex]\( f(n) \)[/tex] is:

[tex]\[ f(n) = 16 \cdot (0.5)^{n-1} \][/tex]