Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let’s analyze each statement given the data and compute the necessary steps to confirm the validity of each statement.
1. The data point for [tex]\(x=1\)[/tex] is above the line of best fit.
- From the table: When [tex]\(x=1\)[/tex], the given value is [tex]\(-5.1\)[/tex] and the predicted value is [tex]\(-5.14\)[/tex].
- Since [tex]\(-5.1 > -5.14\)[/tex], the given value is indeed above the predicted value.
- Therefore, this statement is correct.
2. The residual value for [tex]\(x=3\)[/tex] should be a positive number because the data point is above the line of best fit.
- From the table: When [tex]\(x=3\)[/tex], the given value is [tex]\(1.9\)[/tex] and the predicted value is [tex]\(2.28\)[/tex].
- Since [tex]\(1.9 < 2.28\)[/tex], the given value is below the predicted value.
- Therefore, this statement is incorrect.
3. Fiona made a subtraction error when she computed the residual value for [tex]\(x=4\)[/tex].
- From the table: When [tex]\(x=4\)[/tex], the given value is [tex]\(6.2\)[/tex] and the predicted value is [tex]\(5.99\)[/tex]. The residual Fiona computed is [tex]\(0.21\)[/tex].
- Residual should be: [tex]\[ \text{Residual} = \text{Given} - \text{Predicted} = 6.2 - 5.99 = 0.21 \][/tex]
- Fiona's calculated residual is [tex]\(0.21\)[/tex], which matches the theoretically calculated one.
- Therefore, this statement is incorrect.
4. The residual value for [tex]\(x=2\)[/tex] should be a positive number because the given point is above the line of best fit.
- From the table: When [tex]\(x=2\)[/tex], the given value is [tex]\(-1.3\)[/tex] and the predicted value is [tex]\(-1.43\)[/tex].
- Since [tex]\(-1.3 > -1.43\)[/tex], the given value is above the predicted value.
- Therefore, the residual should indeed be positive.
- This means this statement is correct.
5. The residual value for [tex]\(x=3\)[/tex] is negative because the given point is below the line of best fit.
- From the table: When [tex]\(x=3\)[/tex], the given value is [tex]\(1.9\)[/tex] and the predicted value is [tex]\(2.28\)[/tex].
- Since [tex]\(1.9 < 2.28\)[/tex], the given value is below the predicted value.
- This indicates the residual is negative.
- Therefore, this statement is correct.
Based on this analysis, the three correct statements are:
- The data point for [tex]\(x=1\)[/tex] is above the line of best fit.
- The residual value for [tex]\(x=2\)[/tex] should be a positive number because the given point is above the line of best fit.
- The residual value for [tex]\(x=3\)[/tex] is negative because the given point is below the line of best fit.
1. The data point for [tex]\(x=1\)[/tex] is above the line of best fit.
- From the table: When [tex]\(x=1\)[/tex], the given value is [tex]\(-5.1\)[/tex] and the predicted value is [tex]\(-5.14\)[/tex].
- Since [tex]\(-5.1 > -5.14\)[/tex], the given value is indeed above the predicted value.
- Therefore, this statement is correct.
2. The residual value for [tex]\(x=3\)[/tex] should be a positive number because the data point is above the line of best fit.
- From the table: When [tex]\(x=3\)[/tex], the given value is [tex]\(1.9\)[/tex] and the predicted value is [tex]\(2.28\)[/tex].
- Since [tex]\(1.9 < 2.28\)[/tex], the given value is below the predicted value.
- Therefore, this statement is incorrect.
3. Fiona made a subtraction error when she computed the residual value for [tex]\(x=4\)[/tex].
- From the table: When [tex]\(x=4\)[/tex], the given value is [tex]\(6.2\)[/tex] and the predicted value is [tex]\(5.99\)[/tex]. The residual Fiona computed is [tex]\(0.21\)[/tex].
- Residual should be: [tex]\[ \text{Residual} = \text{Given} - \text{Predicted} = 6.2 - 5.99 = 0.21 \][/tex]
- Fiona's calculated residual is [tex]\(0.21\)[/tex], which matches the theoretically calculated one.
- Therefore, this statement is incorrect.
4. The residual value for [tex]\(x=2\)[/tex] should be a positive number because the given point is above the line of best fit.
- From the table: When [tex]\(x=2\)[/tex], the given value is [tex]\(-1.3\)[/tex] and the predicted value is [tex]\(-1.43\)[/tex].
- Since [tex]\(-1.3 > -1.43\)[/tex], the given value is above the predicted value.
- Therefore, the residual should indeed be positive.
- This means this statement is correct.
5. The residual value for [tex]\(x=3\)[/tex] is negative because the given point is below the line of best fit.
- From the table: When [tex]\(x=3\)[/tex], the given value is [tex]\(1.9\)[/tex] and the predicted value is [tex]\(2.28\)[/tex].
- Since [tex]\(1.9 < 2.28\)[/tex], the given value is below the predicted value.
- This indicates the residual is negative.
- Therefore, this statement is correct.
Based on this analysis, the three correct statements are:
- The data point for [tex]\(x=1\)[/tex] is above the line of best fit.
- The residual value for [tex]\(x=2\)[/tex] should be a positive number because the given point is above the line of best fit.
- The residual value for [tex]\(x=3\)[/tex] is negative because the given point is below the line of best fit.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.