Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Estimate the limit. [tex]\(\lim _{x \rightarrow 3} \frac{x-3}{x^2-9}\)[/tex]

A. [tex]\(\lim _{x \rightarrow 3} f(x)=0.6667\)[/tex]
B. [tex]\(\lim _{x \rightarrow 3} f(x)=0.1667\)[/tex]
C. [tex]\(\lim _{x \rightarrow 3} f(x)=0.1669\)[/tex]
D. [tex]\(\lim _{x \rightarrow 3} f(x)=0.1677\)[/tex]

Please select the best answer from the choices provided.

Sagot :

To estimate the limit [tex]\(\lim _{x \rightarrow 3} \frac{x-3}{x^2-9}\)[/tex], we need to simplify the expression and then evaluate the limit as [tex]\(x\)[/tex] approaches 3.

First, notice that the expression [tex]\(\frac{x-3}{x^2-9}\)[/tex] can be simplified because the denominator [tex]\(x^2 - 9\)[/tex] can be factored:

[tex]\[x^2 - 9 = (x-3)(x+3)\][/tex]

Substituting this into the original expression gives us:

[tex]\[ \frac{x-3}{x^2-9} = \frac{x-3}{(x-3)(x+3)} \][/tex]

By canceling out the common [tex]\((x-3)\)[/tex] term in the numerator and denominator, the expression simplifies to:

[tex]\[ \frac{1}{x+3} \][/tex]

Next, we need to find the limit of [tex]\(\frac{1}{x+3}\)[/tex] as [tex]\(x\)[/tex] approaches 3. We substitute [tex]\(x = 3\)[/tex] into the simplified expression:

[tex]\[ \lim_{x \rightarrow 3} \frac{1}{x+3} = \frac{1}{3+3} = \frac{1}{6} \][/tex]

Therefore, the value of the limit is [tex]\(\frac{1}{6}\)[/tex], which is approximately 0.1667.

From the given choices, the answer that matches this result is:
b. [tex]\(\lim _{x \rightarrow 3} f(x)=0.1667\)[/tex]

So, the best answer is:

b. [tex]\(\lim _{x \rightarrow 3} f(x)=0.1667\)[/tex]