At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the area of a parallelogram given two sides and the angle between them, you can use the formula:
[tex]\[ \text{Area} = a \times b \times \sin(\theta) \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the lengths of the sides of the parallelogram, and [tex]\( \theta \)[/tex] is the angle between them.
Let's break down the steps:
1. Identify the sides and angle:
- [tex]\( a = 6 \)[/tex] feet (one side)
- [tex]\( b = 10 \)[/tex] feet (the other side)
- [tex]\( \theta = 45^\circ \)[/tex] (the angle between the sides)
2. Convert the angle to radians:
- Trigonometric functions in most calculations use angles in radians. The conversion formula from degrees to radians is:
[tex]\[ \text{radians} = \text{degrees} \times \left(\frac{\pi}{180}\right) \][/tex]
- Thus, converting [tex]\( 45^\circ \)[/tex] to radians:
[tex]\[ 45^\circ \times \left(\frac{\pi}{180}\right) = \frac{\pi}{4} \][/tex]
- This results in approximately [tex]\( 0.7854 \)[/tex] radians.
3. Calculate the sine of the angle:
- For [tex]\( \theta = \frac{\pi}{4} \)[/tex], or [tex]\( 45^\circ \)[/tex], the sine value is:
[tex]\[ \sin\left(\frac{\pi}{4}\right) = \sin(45^\circ) = \frac{\sqrt{2}}{2} \approx 0.7071 \][/tex]
4. Calculate the area:
- Substitute the values into the area formula:
[tex]\[ \text{Area} = 6 \text{ ft} \times 10 \text{ ft} \times 0.7071 \][/tex]
- This simplifies to:
[tex]\[ \text{Area} \approx 42.4264 \text{ ft}^2 \][/tex]
Therefore, the area of the parallelogram is approximately [tex]\( 42.43 \)[/tex] square feet.
[tex]\[ \text{Area} = a \times b \times \sin(\theta) \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the lengths of the sides of the parallelogram, and [tex]\( \theta \)[/tex] is the angle between them.
Let's break down the steps:
1. Identify the sides and angle:
- [tex]\( a = 6 \)[/tex] feet (one side)
- [tex]\( b = 10 \)[/tex] feet (the other side)
- [tex]\( \theta = 45^\circ \)[/tex] (the angle between the sides)
2. Convert the angle to radians:
- Trigonometric functions in most calculations use angles in radians. The conversion formula from degrees to radians is:
[tex]\[ \text{radians} = \text{degrees} \times \left(\frac{\pi}{180}\right) \][/tex]
- Thus, converting [tex]\( 45^\circ \)[/tex] to radians:
[tex]\[ 45^\circ \times \left(\frac{\pi}{180}\right) = \frac{\pi}{4} \][/tex]
- This results in approximately [tex]\( 0.7854 \)[/tex] radians.
3. Calculate the sine of the angle:
- For [tex]\( \theta = \frac{\pi}{4} \)[/tex], or [tex]\( 45^\circ \)[/tex], the sine value is:
[tex]\[ \sin\left(\frac{\pi}{4}\right) = \sin(45^\circ) = \frac{\sqrt{2}}{2} \approx 0.7071 \][/tex]
4. Calculate the area:
- Substitute the values into the area formula:
[tex]\[ \text{Area} = 6 \text{ ft} \times 10 \text{ ft} \times 0.7071 \][/tex]
- This simplifies to:
[tex]\[ \text{Area} \approx 42.4264 \text{ ft}^2 \][/tex]
Therefore, the area of the parallelogram is approximately [tex]\( 42.43 \)[/tex] square feet.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.