Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the length of one leg of a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle with a hypotenuse of 4 cm, follow these steps:
1. Recognize the Properties of a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] Triangle:
A [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle (also known as an isosceles right triangle) has two legs of equal length. The relationship between the legs and the hypotenuse in this type of triangle is that each leg is [tex]\(\frac{1}{\sqrt{2}}\)[/tex] times the hypotenuse.
2. Formula Application:
For a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle, if the hypotenuse [tex]\(c\)[/tex] is known, each leg [tex]\(a\)[/tex] can be calculated using the formula:
[tex]\[ a = \frac{c}{\sqrt{2}} \][/tex]
3. Substitute the Given Hypotenuse:
Given that the hypotenuse [tex]\(c = 4\)[/tex] cm, substitute it into the formula:
[tex]\[ a = \frac{4}{\sqrt{2}} \][/tex]
4. Simplify the Expression:
Simplify [tex]\(\frac{4}{\sqrt{2}}\)[/tex] by multiplying the numerator and the denominator by [tex]\(\sqrt{2}\)[/tex] to rationalize the denominator:
[tex]\[ a = \frac{4}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{4\sqrt{2}}{2} = 2\sqrt{2} \][/tex]
5. Conclusion:
Therefore, the length of one leg of the triangle is [tex]\( 2\sqrt{2} \)[/tex] cm.
Thus, the correct answer is [tex]\(2 \sqrt{2}\)[/tex] cm.
1. Recognize the Properties of a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] Triangle:
A [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle (also known as an isosceles right triangle) has two legs of equal length. The relationship between the legs and the hypotenuse in this type of triangle is that each leg is [tex]\(\frac{1}{\sqrt{2}}\)[/tex] times the hypotenuse.
2. Formula Application:
For a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle, if the hypotenuse [tex]\(c\)[/tex] is known, each leg [tex]\(a\)[/tex] can be calculated using the formula:
[tex]\[ a = \frac{c}{\sqrt{2}} \][/tex]
3. Substitute the Given Hypotenuse:
Given that the hypotenuse [tex]\(c = 4\)[/tex] cm, substitute it into the formula:
[tex]\[ a = \frac{4}{\sqrt{2}} \][/tex]
4. Simplify the Expression:
Simplify [tex]\(\frac{4}{\sqrt{2}}\)[/tex] by multiplying the numerator and the denominator by [tex]\(\sqrt{2}\)[/tex] to rationalize the denominator:
[tex]\[ a = \frac{4}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{4\sqrt{2}}{2} = 2\sqrt{2} \][/tex]
5. Conclusion:
Therefore, the length of one leg of the triangle is [tex]\( 2\sqrt{2} \)[/tex] cm.
Thus, the correct answer is [tex]\(2 \sqrt{2}\)[/tex] cm.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.