Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure! To find the circumference of a circle when the radius is known, we can use the formula:
[tex]\[ \text{Circumference} = 2 \pi r \][/tex]
Here, [tex]\( r \)[/tex] is the radius of the circle, and [tex]\( \pi \)[/tex] (pi) is a constant approximately equal to 3.1416, but we'll use [tex]\(\pi = \frac{22}{7}\)[/tex] as given.
Given:
- Radius [tex]\( r = 35 \)[/tex] units
- [tex]\(\pi = \frac{22}{7}\)[/tex]
Now, let's substitute these values into the formula for the circumference.
[tex]\[ \text{Circumference} = 2 \pi r \][/tex]
[tex]\[ \text{Circumference} = 2 \left(\frac{22}{7}\right) \times 35 \][/tex]
Next, we need to simplify the expression:
[tex]\[ \text{Circumference} = 2 \times \frac{22}{7} \times 35 \][/tex]
We can perform the multiplication in steps:
1. Multiply [tex]\(\frac{22}{7} \)[/tex] by 35:
[tex]\[ \frac{22}{7} \times 35 = \frac{22 \times 35}{7} \][/tex]
2. Simplify the fraction:
[tex]\[ \frac{22 \times 35}{7} = \frac{770}{7} = 110 \][/tex]
3. Now, multiply this result by 2:
[tex]\[ 2 \times 110 = 220 \][/tex]
Therefore, the circumference of the circle is [tex]\( 220 \)[/tex] units.
Finally, the circumference of the circle with a radius of 35 units is [tex]\( \boxed{220} \)[/tex] units.
[tex]\[ \text{Circumference} = 2 \pi r \][/tex]
Here, [tex]\( r \)[/tex] is the radius of the circle, and [tex]\( \pi \)[/tex] (pi) is a constant approximately equal to 3.1416, but we'll use [tex]\(\pi = \frac{22}{7}\)[/tex] as given.
Given:
- Radius [tex]\( r = 35 \)[/tex] units
- [tex]\(\pi = \frac{22}{7}\)[/tex]
Now, let's substitute these values into the formula for the circumference.
[tex]\[ \text{Circumference} = 2 \pi r \][/tex]
[tex]\[ \text{Circumference} = 2 \left(\frac{22}{7}\right) \times 35 \][/tex]
Next, we need to simplify the expression:
[tex]\[ \text{Circumference} = 2 \times \frac{22}{7} \times 35 \][/tex]
We can perform the multiplication in steps:
1. Multiply [tex]\(\frac{22}{7} \)[/tex] by 35:
[tex]\[ \frac{22}{7} \times 35 = \frac{22 \times 35}{7} \][/tex]
2. Simplify the fraction:
[tex]\[ \frac{22 \times 35}{7} = \frac{770}{7} = 110 \][/tex]
3. Now, multiply this result by 2:
[tex]\[ 2 \times 110 = 220 \][/tex]
Therefore, the circumference of the circle is [tex]\( 220 \)[/tex] units.
Finally, the circumference of the circle with a radius of 35 units is [tex]\( \boxed{220} \)[/tex] units.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.