Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Ask your questions and receive precise answers from experienced professionals across different disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

89. If [tex]\left(x^2\right)^y = x^{16}[/tex], then which of the following is equivalent to [tex]y[/tex]?

A) 4
B) 6
C) 8
D) 14

Sagot :

To solve the equation [tex]\(\left(x^2\right)^y = x^{16}\)[/tex], we need to use the properties of exponents. Let's proceed step-by-step.

1. Rewrite the left-hand side using the exponentiation rule: [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]. Therefore, [tex]\(\left(x^2\right)^y\)[/tex] becomes:
[tex]\[ (x^2)^y = x^{2y} \][/tex]

2. Equate the exponents on both sides of the equation since the bases on both sides are the same (both are [tex]\(x\)[/tex]):
[tex]\[ x^{2y} = x^{16} \][/tex]

3. Solve for [tex]\(y\)[/tex] by setting the exponents equal to each other:
[tex]\[ 2y = 16 \][/tex]

4. Divide both sides by 2:
[tex]\[ y = \frac{16}{2} \][/tex]

5. Simplify the right-hand side:
[tex]\[ y = 8 \][/tex]

So, [tex]\(y = 8\)[/tex].

Given the choices:
A) 4
B) 6
C) 8
D) 14

The correct equivalent value of [tex]\(y\)[/tex] is [tex]\(8\)[/tex], which corresponds to option C.