Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure! Let's match each equation on the left with the appropriate mathematical property on the right. We'll discuss each equation step-by-step to identify the property it uses.
1. Equation: [tex]\((7 + 3) + 2 = 2 + (7 + 3)\)[/tex]
- This equation is illustrating the commutative property of addition. The commutative property states that the order of addition does not change the sum. Therefore, [tex]\((a + b) + c = c + (a + b)\)[/tex].
2. Equation: [tex]\(3(2x + 4) = 6x + 12\)[/tex]
- This equation is illustrating the distributive property. The distributive property states that multiplying a number by a sum is the same as multiplying each addend by the number and then adding the products: [tex]\(a(b + c) = ab + ac\)[/tex].
3. Equation: [tex]\((9 \cdot x) \cdot 3 = 9 \cdot (x \cdot 3)\)[/tex]
- This equation is illustrating the associative property of multiplication. The associative property states that the way in which factors are grouped does not change the product. So, [tex]\((a \cdot b) \cdot c = a \cdot (b \cdot c)\)[/tex].
4. Equation: [tex]\((8 \cdot x \cdot 2) = (8 \cdot 2 \cdot x)\)[/tex]
- This equation is illustrating the commutative property of multiplication. The commutative property states that the order of factors does not change the product. Hence, [tex]\(a \cdot b = b \cdot a\)[/tex].
5. Equation: [tex]\((4 + 5) + 1 = 4 + (5 + 1)\)[/tex]
- This equation is illustrating the associative property of addition. The associative property states that the way in which addends are grouped does not change the sum. Therefore, [tex]\((a + b) + c = a + (b + c)\)[/tex].
Here's the complete matching:
- [tex]\((7 + 3) + 2 = 2 + (7 + 3)\)[/tex] → commutative property of addition
- [tex]\(3(2x + 4) = 6x + 12\)[/tex] → distributive property
- [tex]\((9 \cdot x) \cdot 3 = 9 \cdot (x \cdot 3)\)[/tex] → associative property of multiplication
- [tex]\((8 \cdot x \cdot 2) = (8 \cdot 2 \cdot x)\)[/tex] → commutative property of multiplication
- [tex]\((4 + 5) + 1 = 4 + (5 + 1)\)[/tex] → associative property of addition
1. Equation: [tex]\((7 + 3) + 2 = 2 + (7 + 3)\)[/tex]
- This equation is illustrating the commutative property of addition. The commutative property states that the order of addition does not change the sum. Therefore, [tex]\((a + b) + c = c + (a + b)\)[/tex].
2. Equation: [tex]\(3(2x + 4) = 6x + 12\)[/tex]
- This equation is illustrating the distributive property. The distributive property states that multiplying a number by a sum is the same as multiplying each addend by the number and then adding the products: [tex]\(a(b + c) = ab + ac\)[/tex].
3. Equation: [tex]\((9 \cdot x) \cdot 3 = 9 \cdot (x \cdot 3)\)[/tex]
- This equation is illustrating the associative property of multiplication. The associative property states that the way in which factors are grouped does not change the product. So, [tex]\((a \cdot b) \cdot c = a \cdot (b \cdot c)\)[/tex].
4. Equation: [tex]\((8 \cdot x \cdot 2) = (8 \cdot 2 \cdot x)\)[/tex]
- This equation is illustrating the commutative property of multiplication. The commutative property states that the order of factors does not change the product. Hence, [tex]\(a \cdot b = b \cdot a\)[/tex].
5. Equation: [tex]\((4 + 5) + 1 = 4 + (5 + 1)\)[/tex]
- This equation is illustrating the associative property of addition. The associative property states that the way in which addends are grouped does not change the sum. Therefore, [tex]\((a + b) + c = a + (b + c)\)[/tex].
Here's the complete matching:
- [tex]\((7 + 3) + 2 = 2 + (7 + 3)\)[/tex] → commutative property of addition
- [tex]\(3(2x + 4) = 6x + 12\)[/tex] → distributive property
- [tex]\((9 \cdot x) \cdot 3 = 9 \cdot (x \cdot 3)\)[/tex] → associative property of multiplication
- [tex]\((8 \cdot x \cdot 2) = (8 \cdot 2 \cdot x)\)[/tex] → commutative property of multiplication
- [tex]\((4 + 5) + 1 = 4 + (5 + 1)\)[/tex] → associative property of addition
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.