Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's dive into the given expression and show the step-by-step solution to verify the given trigonometric identity:
[tex]\[ \frac{\cot^3 B - \tan^3 B}{\cot B - \tan B} = \sec^2 B + \csc^2 B - 1 \][/tex]
### Step 1: Simplify the Left-Hand Side (LHS)
The left-hand side of the equation is:
[tex]\[ \frac{\cot^3 B - \tan^3 B}{\cot B - \tan B} \][/tex]
Notice that this fraction is in the form of a difference of cubes. Recall the algebraic identity for the difference of cubes:
[tex]\[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \][/tex]
Here, let [tex]\( a = \cot B \)[/tex] and [tex]\( b = \tan B \)[/tex]. Applying the difference of cubes identity:
[tex]\[ \cot^3 B - \tan^3 B = (\cot B - \tan B)(\cot^2 B + \cot B \cdot \tan B + \tan^2 B) \][/tex]
Now, substitute this back into the fraction:
[tex]\[ \frac{(\cot B - \tan B)(\cot^2 B + \cot B \cdot \tan B + \tan^2 B)}{\cot B - \tan B} \][/tex]
The common factor [tex]\( (\cot B - \tan B) \)[/tex] cancels out:
[tex]\[ \cot^2 B + \cot B \cdot \tan B + \tan^2 B \][/tex]
### Step 2: Further Simplify Using Trigonometric Identities
We know that:
[tex]\[ \cot B = \frac{1}{\tan B} \][/tex]
So:
[tex]\[ \cot^2 B = \left( \frac{1}{\tan B} \right)^2 = \frac{1}{\tan^2 B} \][/tex]
Now, substitute these into the simplified LHS expression:
[tex]\[ \frac{1}{\tan^2 B} + \left( \frac{1}{\tan B} \cdot \tan B \right) + \tan^2 B \][/tex]
[tex]\[ \frac{1}{\tan^2 B} + 1 + \tan^2 B \][/tex]
We can rewrite this as:
[tex]\[ \tan^2 B + 1 + \frac{1}{\tan^2 B} \][/tex]
### Step 3: Simplify the Right-Hand Side (RHS)
The right-hand side is given as:
[tex]\[ \sec^2 B + \csc^2 B - 1 \][/tex]
Recall the Pythagorean identities:
[tex]\[ \sec^2 B = 1 + \tan^2 B \][/tex]
[tex]\[ \csc^2 B = 1 + \cot^2 B \][/tex]
So:
[tex]\[ \sec^2 B + \csc^2 B - 1 = (1 + \tan^2 B) + (1 + \cot^2 B) - 1 \][/tex]
[tex]\[ = \tan^2 B + \cot^2 B + 1 \][/tex]
Substituting back, we get:
[tex]\[ \tan^2 B + \frac{1}{\tan^2 B} + 1 \][/tex]
### Step 4: Verify the Equality
We have already simplified both sides and can now compare:
[tex]\[ \frac{\cot^3 B - \tan^3 B}{\cot B - \tan B} = \tan^2 B + 1 + \frac{1}{\tan^2 B} \][/tex]
[tex]\[ \sec^2 B + \csc^2 B - 1 = \tan^2 B + \frac{1}{\tan^2 B} + 1 \][/tex]
Both the simplified left-hand side and right-hand side are indeed equal, proving the given trigonometric identity:
[tex]\[ \frac{\cot^3 B - \tan^3 B}{\cot B - \tan B} = \sec^2 B + \csc^2 B - 1 \][/tex]
Therefore, the identity is verified to be true.
[tex]\[ \frac{\cot^3 B - \tan^3 B}{\cot B - \tan B} = \sec^2 B + \csc^2 B - 1 \][/tex]
### Step 1: Simplify the Left-Hand Side (LHS)
The left-hand side of the equation is:
[tex]\[ \frac{\cot^3 B - \tan^3 B}{\cot B - \tan B} \][/tex]
Notice that this fraction is in the form of a difference of cubes. Recall the algebraic identity for the difference of cubes:
[tex]\[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \][/tex]
Here, let [tex]\( a = \cot B \)[/tex] and [tex]\( b = \tan B \)[/tex]. Applying the difference of cubes identity:
[tex]\[ \cot^3 B - \tan^3 B = (\cot B - \tan B)(\cot^2 B + \cot B \cdot \tan B + \tan^2 B) \][/tex]
Now, substitute this back into the fraction:
[tex]\[ \frac{(\cot B - \tan B)(\cot^2 B + \cot B \cdot \tan B + \tan^2 B)}{\cot B - \tan B} \][/tex]
The common factor [tex]\( (\cot B - \tan B) \)[/tex] cancels out:
[tex]\[ \cot^2 B + \cot B \cdot \tan B + \tan^2 B \][/tex]
### Step 2: Further Simplify Using Trigonometric Identities
We know that:
[tex]\[ \cot B = \frac{1}{\tan B} \][/tex]
So:
[tex]\[ \cot^2 B = \left( \frac{1}{\tan B} \right)^2 = \frac{1}{\tan^2 B} \][/tex]
Now, substitute these into the simplified LHS expression:
[tex]\[ \frac{1}{\tan^2 B} + \left( \frac{1}{\tan B} \cdot \tan B \right) + \tan^2 B \][/tex]
[tex]\[ \frac{1}{\tan^2 B} + 1 + \tan^2 B \][/tex]
We can rewrite this as:
[tex]\[ \tan^2 B + 1 + \frac{1}{\tan^2 B} \][/tex]
### Step 3: Simplify the Right-Hand Side (RHS)
The right-hand side is given as:
[tex]\[ \sec^2 B + \csc^2 B - 1 \][/tex]
Recall the Pythagorean identities:
[tex]\[ \sec^2 B = 1 + \tan^2 B \][/tex]
[tex]\[ \csc^2 B = 1 + \cot^2 B \][/tex]
So:
[tex]\[ \sec^2 B + \csc^2 B - 1 = (1 + \tan^2 B) + (1 + \cot^2 B) - 1 \][/tex]
[tex]\[ = \tan^2 B + \cot^2 B + 1 \][/tex]
Substituting back, we get:
[tex]\[ \tan^2 B + \frac{1}{\tan^2 B} + 1 \][/tex]
### Step 4: Verify the Equality
We have already simplified both sides and can now compare:
[tex]\[ \frac{\cot^3 B - \tan^3 B}{\cot B - \tan B} = \tan^2 B + 1 + \frac{1}{\tan^2 B} \][/tex]
[tex]\[ \sec^2 B + \csc^2 B - 1 = \tan^2 B + \frac{1}{\tan^2 B} + 1 \][/tex]
Both the simplified left-hand side and right-hand side are indeed equal, proving the given trigonometric identity:
[tex]\[ \frac{\cot^3 B - \tan^3 B}{\cot B - \tan B} = \sec^2 B + \csc^2 B - 1 \][/tex]
Therefore, the identity is verified to be true.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.