Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

A point charge of [tex][tex]$5.7 \mu C$[/tex][/tex] moves at [tex][tex]$4.5 \times 10^5 \, m/s$[/tex][/tex] in a magnetic field that has a field strength of [tex][tex]$3.2 \, mT$[/tex][/tex], as shown in the diagram.

What is the magnitude of the magnetic force acting on the charge?

A. [tex][tex]$6.6 \times 10^{-3} \, N$[/tex][/tex]
B. [tex][tex]$4.9 \times 10^{-3} \, N$[/tex][/tex]
C. [tex][tex]$4.9 \times 10^3 \, N$[/tex][/tex]
D. [tex][tex]$6.6 \times 10^3 \, N$[/tex][/tex]

Sagot :

To solve for the magnitude of the magnetic force acting on a moving charge in a magnetic field, we use the formula:

[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]

where:
- [tex]\( F \)[/tex] is the magnetic force,
- [tex]\( q \)[/tex] is the charge,
- [tex]\( v \)[/tex] is the velocity of the charge,
- [tex]\( B \)[/tex] is the magnetic field strength,
- [tex]\(\theta\)[/tex] is the angle between the velocity and the magnetic field direction.

Given the values:
- [tex]\( q = 5.7 \mu C = 5.7 \times 10^{-6} \, C \)[/tex],
- [tex]\( v = 4.5 \times 10^5 \, m/s \)[/tex],
- [tex]\( B = 3.2 \, mT = 3.2 \times 10^{-3} \, T \)[/tex],
- [tex]\( \theta = 90^\circ \)[/tex] (since this angle will maximize the force, and [tex]\(\sin(90^\circ) = 1\)[/tex]),

we can plug these values into the formula. Since the angle [tex]\(\theta\)[/tex] is [tex]\(90^\circ\)[/tex]:

[tex]\[ \sin(90^\circ) = 1 \][/tex]

Now we compute:

[tex]\[ F = (5.7 \times 10^{-6} \, C) \cdot (4.5 \times 10^5 \, m/s) \cdot (3.2 \times 10^{-3} \, T) \cdot 1 \][/tex]

Let's multiply the values step-by-step:

1. Calculate [tex]\( q \cdot v \)[/tex]:

[tex]\[ 5.7 \times 10^{-6} \, C \cdot 4.5 \times 10^5 \, m/s = 2.565 \times 10^{-6+5} = 2.565 \times 10^{-1} \][/tex]

2. Multiply the result by [tex]\( B \)[/tex]:

[tex]\[ 2.565 \times 10^{-1} \cdot 3.2 \times 10^{-3} = 8.208 \times 10^{-4} \][/tex]

So, the magnitude of the magnetic force is:

[tex]\[ F = 0.008208 \, N \][/tex]

Hence, the correct magnitude of the magnetic force acting on the charge is [tex]\( 0.008208 \, N \)[/tex].

Among the choices given:
[tex]\( 6.6 \times 10^{-3} \, N \)[/tex],
[tex]\( 4.9 \times 10^{-3} \, N \)[/tex],
[tex]\( 4.9 \times 10^3 \, N \)[/tex],
[tex]\( 6.6 \times 10^3 \, N \)[/tex],

the value closest to our computed result of [tex]\( 0.008208 \, N \)[/tex] is:

[tex]\[ 6.6 \times 10^{-3} \, N \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{6.6 \times 10^{-3} \, N} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.