Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's work through this problem step-by-step to determine the angle of elevation at which the archer should shoot in order to hit the target.
### Step-by-Step Solution:
1. Identify the Given Data:
- Archer's height (h₁): 1.5 meters
- Target's height (h₂): 4.5 meters
- Horizontal distance between target and archer (d): 3 meters
2. Calculate the Height Difference:
- The height difference between the archer and the target ([tex]\(\Delta h\)[/tex]):
[tex]\[ \Delta h = h_2 - h_1 \][/tex]
Substituting the given values:
[tex]\[ \Delta h = 4.5 \, \text{meters} - 1.5 \, \text{meters} = 3.0 \, \text{meters} \][/tex]
3. Use Trigonometry to Determine the Angle of Elevation:
- We employ the tangent function, which is the ratio of the opposite side (height difference) to the adjacent side (horizontal distance):
[tex]\[ \tan(\theta) = \frac{\Delta h}{d} \][/tex]
[tex]\[ \tan(\theta) = \frac{3.0 \, \text{meters}}{3 \, \text{meters}} = 1 \][/tex]
4. Calculate the Angle:
- To find the angle [tex]\(\theta\)[/tex], we take the inverse tangent (arctan) of 1:
[tex]\[ \theta = \arctan(1) \][/tex]
5. Convert from Radians to Degrees (if necessary):
- The inverse tangent of 1 is [tex]\(\frac{\pi}{4}\)[/tex] radians.
- Converting [tex]\(\frac{\pi}{4}\)[/tex] radians to degrees:
[tex]\[ \theta = 45^\circ \][/tex]
### Conclusion:
The angle of elevation at which the archer should shoot the arrow to hit the target is 45°. Therefore, the correct answer is:
(B) 45°
### Step-by-Step Solution:
1. Identify the Given Data:
- Archer's height (h₁): 1.5 meters
- Target's height (h₂): 4.5 meters
- Horizontal distance between target and archer (d): 3 meters
2. Calculate the Height Difference:
- The height difference between the archer and the target ([tex]\(\Delta h\)[/tex]):
[tex]\[ \Delta h = h_2 - h_1 \][/tex]
Substituting the given values:
[tex]\[ \Delta h = 4.5 \, \text{meters} - 1.5 \, \text{meters} = 3.0 \, \text{meters} \][/tex]
3. Use Trigonometry to Determine the Angle of Elevation:
- We employ the tangent function, which is the ratio of the opposite side (height difference) to the adjacent side (horizontal distance):
[tex]\[ \tan(\theta) = \frac{\Delta h}{d} \][/tex]
[tex]\[ \tan(\theta) = \frac{3.0 \, \text{meters}}{3 \, \text{meters}} = 1 \][/tex]
4. Calculate the Angle:
- To find the angle [tex]\(\theta\)[/tex], we take the inverse tangent (arctan) of 1:
[tex]\[ \theta = \arctan(1) \][/tex]
5. Convert from Radians to Degrees (if necessary):
- The inverse tangent of 1 is [tex]\(\frac{\pi}{4}\)[/tex] radians.
- Converting [tex]\(\frac{\pi}{4}\)[/tex] radians to degrees:
[tex]\[ \theta = 45^\circ \][/tex]
### Conclusion:
The angle of elevation at which the archer should shoot the arrow to hit the target is 45°. Therefore, the correct answer is:
(B) 45°
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.