Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

A block is pulled by a force of [tex][tex]$124 \, \text{N}$[/tex][/tex] directed at a [tex]29.6^{\circ}[/tex] angle from the horizontal.

What is the [tex]y[/tex]-component of the force acting on the block?

[tex]\overrightarrow{F_y} = \, ? \, \text{N}[/tex]

Sagot :

To find the [tex]\( y \)[/tex]-component of the force acting on the block, we can use the concept of trigonometric decomposition of vectors. Here’s a step-by-step breakdown of the procedure:

1. Identify the given values:
- The magnitude of the force, [tex]\( F \)[/tex], is [tex]\( 124 \)[/tex] Newtons.
- The angle [tex]\( \theta \)[/tex] that the force makes with the horizontal is [tex]\( 29.6^\circ \)[/tex].

2. Recall the formula to find the [tex]\( y \)[/tex]-component of a force:
[tex]\[ F_y = F \sin(\theta) \][/tex]
Where [tex]\( F_y \)[/tex] is the [tex]\( y \)[/tex]-component of the force, [tex]\( F \)[/tex] is the magnitude of the force, and [tex]\( \theta \)[/tex] is the angle the force makes with the horizontal.

3. Convert the angle from degrees to radians: Since the sine function in most trigonometric calculations is typically defined in radians, we convert [tex]\( 29.6^\circ \)[/tex] to radians.
- However, for simplicity, we assume the angle conversion and sine calculation are handled accurately.

4. Calculate the [tex]\( y \)[/tex]-component:
Using the sine function with the given angle, we have:
[tex]\[ F_y = 124 \sin(29.6^\circ) \][/tex]

5. Result:
By applying the sine function to the angle [tex]\( 29.6^\circ \)[/tex] and multiplying it by the force magnitude [tex]\( 124 \)[/tex] Newtons, we get:
[tex]\[ F_y \approx 61.24879145644464 \text{ N} \][/tex]

Thus, the [tex]\( y \)[/tex]-component of the force acting on the block is:
[tex]\[ \overrightarrow{F_y} \approx 61.24879145644464 \text{ N} \][/tex]