At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the probability that the third digit in a locker combination consisting of three unique nonzero digits (1 through 9) is even, given that the first two digits are even, let's break down the problem step-by-step:
1. Identify nonzero digits and even digits:
- There are a total of 9 nonzero digits: {1, 2, 3, 4, 5, 6, 7, 8, 9}.
- Among these, the even digits are 2, 4, 6, and 8. There are 4 even digits in total.
2. Determine the total number of digits after selecting the first two even digits:
- Since the first two digits are even, we select 2 digits from the 4 available even digits.
- After selecting the first two even digits, there are 7 digits remaining (9 total digits - 2 selected digits).
3. Determine the number of remaining even digits:
- We initially had 4 even digits, and we’ve already used 2 of them for the first two positions.
- Therefore, there are 2 remaining even digits.
4. Calculate the probability that the third digit is even:
- The total number of remaining digits is 7.
- The remaining even digits among these 7 are 2.
The probability that the third digit is even is given by the ratio of the number of remaining even digits to the total number of remaining digits:
[tex]\[ \text{Probability} = \frac{\text{Number of remaining even digits}}{\text{Total number of remaining digits}} = \frac{2}{7} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{2}{7}} \][/tex]
1. Identify nonzero digits and even digits:
- There are a total of 9 nonzero digits: {1, 2, 3, 4, 5, 6, 7, 8, 9}.
- Among these, the even digits are 2, 4, 6, and 8. There are 4 even digits in total.
2. Determine the total number of digits after selecting the first two even digits:
- Since the first two digits are even, we select 2 digits from the 4 available even digits.
- After selecting the first two even digits, there are 7 digits remaining (9 total digits - 2 selected digits).
3. Determine the number of remaining even digits:
- We initially had 4 even digits, and we’ve already used 2 of them for the first two positions.
- Therefore, there are 2 remaining even digits.
4. Calculate the probability that the third digit is even:
- The total number of remaining digits is 7.
- The remaining even digits among these 7 are 2.
The probability that the third digit is even is given by the ratio of the number of remaining even digits to the total number of remaining digits:
[tex]\[ \text{Probability} = \frac{\text{Number of remaining even digits}}{\text{Total number of remaining digits}} = \frac{2}{7} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{2}{7}} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.