Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which system is equivalent to the given system of equations:
[tex]\[ \begin{cases} 5x^2 + 6y^2 = 50 \\ 7x^2 + 2y^2 = 10 \end{cases} \][/tex]
We need to verify each of the four provided systems step by step.
Step 1: Verify the first system:
[tex]\[ \begin{cases} 5x^2 + 6y^2 = 50 \\ -21x^2 - 6y^2 = 10 \end{cases} \][/tex]
This system can be rewritten for comparison:
- The first equation remains: \( 5x^2 + 6y^2 = 50 \).
- Simplify the second equation to identify if it aligns with the given original equations:
[tex]\[ -21x^2 - 6y^2 = 10 \Rightarrow \text{not equivalent to } 7x^2 + 2y^2 = 10 \][/tex]
This system is NOT equivalent.
Step 2: Verify the second system:
[tex]\[ \begin{cases} 5x^2 + 6y^2 = 50 \\ -21x^2 - 6y^2 = 30 \end{cases} \][/tex]
This system can be rewritten for comparison:
- The first equation remains: \( 5x^2 + 6y^2 = 50 \).
- Simplify the second equation to identify if it aligns with the given original equation:
[tex]\[ -21x^2 - 6y^2 = 30 \Rightarrow \text{not equivalent to } 7x^2 + 2y^2 = 10 \][/tex]
This system is NOT equivalent.
Step 3: Verify the third system:
[tex]\[ \begin{cases} 35x^2 + 42y^2 = 250 \\ -35x^2 - 10y^2 = -50 \end{cases} \][/tex]
This system can be rewritten for comparison:
- The first equation from the given system, when multiplied by 7, becomes:
[tex]\[ 7 \cdot (5x^2 + 6y^2) = 7 \cdot 50 \Rightarrow 35x^2 + 42y^2 = 350 \text{ (not 250)} \][/tex]
This system is NOT equivalent.
Step 4: Verify the fourth system:
[tex]\[ \begin{cases} 35x^2 + 42y^2 = 350 \\ -35x^2 - 10y^2 = -50 \end{cases} \][/tex]
This system can be rewritten for comparison:
- The first equation from the given system, when multiplied by 7, becomes:
[tex]\[ 7 \cdot (5x^2 + 6y^2) = 7 \cdot 50 \Rightarrow 35x^2 + 42y^2 = 350 \][/tex]
This is equivalent.
- The second equation from the given system, when multiplied by 5, becomes:
[tex]\[ 5 \cdot (7x^2 + 2y^2) = 5 \cdot 10 \Rightarrow 35x^2 + 10y^2 = 50 \][/tex]
When rearranged to an equivalent form with a negative sign, it is:
[tex]\[ -35x^2 - 10y^2 = -50 \][/tex]
Which matches the second equation in this system.
Thus, the fourth system is equivalent.
Conclusion:
The system equivalent to the given one is:
[tex]\[ \left\{\begin{array}{l} 35x^2 + 42y^2 = 350 \\ -35x^2 - 10y^2 = -50 \end{array}\right. \][/tex]
[tex]\[ \begin{cases} 5x^2 + 6y^2 = 50 \\ 7x^2 + 2y^2 = 10 \end{cases} \][/tex]
We need to verify each of the four provided systems step by step.
Step 1: Verify the first system:
[tex]\[ \begin{cases} 5x^2 + 6y^2 = 50 \\ -21x^2 - 6y^2 = 10 \end{cases} \][/tex]
This system can be rewritten for comparison:
- The first equation remains: \( 5x^2 + 6y^2 = 50 \).
- Simplify the second equation to identify if it aligns with the given original equations:
[tex]\[ -21x^2 - 6y^2 = 10 \Rightarrow \text{not equivalent to } 7x^2 + 2y^2 = 10 \][/tex]
This system is NOT equivalent.
Step 2: Verify the second system:
[tex]\[ \begin{cases} 5x^2 + 6y^2 = 50 \\ -21x^2 - 6y^2 = 30 \end{cases} \][/tex]
This system can be rewritten for comparison:
- The first equation remains: \( 5x^2 + 6y^2 = 50 \).
- Simplify the second equation to identify if it aligns with the given original equation:
[tex]\[ -21x^2 - 6y^2 = 30 \Rightarrow \text{not equivalent to } 7x^2 + 2y^2 = 10 \][/tex]
This system is NOT equivalent.
Step 3: Verify the third system:
[tex]\[ \begin{cases} 35x^2 + 42y^2 = 250 \\ -35x^2 - 10y^2 = -50 \end{cases} \][/tex]
This system can be rewritten for comparison:
- The first equation from the given system, when multiplied by 7, becomes:
[tex]\[ 7 \cdot (5x^2 + 6y^2) = 7 \cdot 50 \Rightarrow 35x^2 + 42y^2 = 350 \text{ (not 250)} \][/tex]
This system is NOT equivalent.
Step 4: Verify the fourth system:
[tex]\[ \begin{cases} 35x^2 + 42y^2 = 350 \\ -35x^2 - 10y^2 = -50 \end{cases} \][/tex]
This system can be rewritten for comparison:
- The first equation from the given system, when multiplied by 7, becomes:
[tex]\[ 7 \cdot (5x^2 + 6y^2) = 7 \cdot 50 \Rightarrow 35x^2 + 42y^2 = 350 \][/tex]
This is equivalent.
- The second equation from the given system, when multiplied by 5, becomes:
[tex]\[ 5 \cdot (7x^2 + 2y^2) = 5 \cdot 10 \Rightarrow 35x^2 + 10y^2 = 50 \][/tex]
When rearranged to an equivalent form with a negative sign, it is:
[tex]\[ -35x^2 - 10y^2 = -50 \][/tex]
Which matches the second equation in this system.
Thus, the fourth system is equivalent.
Conclusion:
The system equivalent to the given one is:
[tex]\[ \left\{\begin{array}{l} 35x^2 + 42y^2 = 350 \\ -35x^2 - 10y^2 = -50 \end{array}\right. \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.