Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve the equation \( x + \sqrt{5x + 10} = 8 \) step-by-step to find the correct value of \( x \).
1. Isolate the square root term:
[tex]\[ \sqrt{5x + 10} = 8 - x \][/tex]
2. Square both sides of the equation to eliminate the square root:
[tex]\[ (\sqrt{5x + 10})^2 = (8 - x)^2 \][/tex]
[tex]\[ 5x + 10 = (8 - x)^2 \][/tex]
3. Expand the squared term on the right side:
[tex]\[ 5x + 10 = 64 - 16x + x^2 \][/tex]
4. Rearrange the terms to form a standard quadratic equation:
[tex]\[ x^2 - 16x + 64 - 5x - 10 = 0 \][/tex]
[tex]\[ x^2 - 21x + 54 = 0 \][/tex]
5. Solve the quadratic equation:
To solve the quadratic equation \( x^2 - 21x + 54 = 0 \), we can use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where \( a = 1 \), \( b = -21 \), and \( c = 54 \).
Substituting these values into the formula, we get:
[tex]\[ x = \frac{-(-21) \pm \sqrt{(-21)^2 - 4 \cdot 1 \cdot 54}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{21 \pm \sqrt{441 - 216}}{2} \][/tex]
[tex]\[ x = \frac{21 \pm \sqrt{225}}{2} \][/tex]
[tex]\[ x = \frac{21 \pm 15}{2} \][/tex]
This gives two potential solutions:
[tex]\[ x = \frac{21 + 15}{2} = \frac{36}{2} = 18 \][/tex]
[tex]\[ x = \frac{21 - 15}{2} = \frac{6}{2} = 3 \][/tex]
6. Verify the solutions to ensure they satisfy the original equation:
- For \( x = 18 \):
[tex]\[ 18 + \sqrt{5(18) + 10} = 18 + \sqrt{90 + 10} = 18 + \sqrt{100} = 18 + 10 = 28 \neq 8 \][/tex]
This solution does not satisfy the original equation.
- For \( x = 3 \):
[tex]\[ 3 + \sqrt{5(3) + 10} = 3 + \sqrt{15 + 10} = 3 + \sqrt{25} = 3 + 5 = 8 \][/tex]
This solution satisfies the original equation.
Therefore, \( x = 3 \) is the correct solution.
The correct answer is [tex]\( \boxed{3} \)[/tex].
1. Isolate the square root term:
[tex]\[ \sqrt{5x + 10} = 8 - x \][/tex]
2. Square both sides of the equation to eliminate the square root:
[tex]\[ (\sqrt{5x + 10})^2 = (8 - x)^2 \][/tex]
[tex]\[ 5x + 10 = (8 - x)^2 \][/tex]
3. Expand the squared term on the right side:
[tex]\[ 5x + 10 = 64 - 16x + x^2 \][/tex]
4. Rearrange the terms to form a standard quadratic equation:
[tex]\[ x^2 - 16x + 64 - 5x - 10 = 0 \][/tex]
[tex]\[ x^2 - 21x + 54 = 0 \][/tex]
5. Solve the quadratic equation:
To solve the quadratic equation \( x^2 - 21x + 54 = 0 \), we can use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where \( a = 1 \), \( b = -21 \), and \( c = 54 \).
Substituting these values into the formula, we get:
[tex]\[ x = \frac{-(-21) \pm \sqrt{(-21)^2 - 4 \cdot 1 \cdot 54}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{21 \pm \sqrt{441 - 216}}{2} \][/tex]
[tex]\[ x = \frac{21 \pm \sqrt{225}}{2} \][/tex]
[tex]\[ x = \frac{21 \pm 15}{2} \][/tex]
This gives two potential solutions:
[tex]\[ x = \frac{21 + 15}{2} = \frac{36}{2} = 18 \][/tex]
[tex]\[ x = \frac{21 - 15}{2} = \frac{6}{2} = 3 \][/tex]
6. Verify the solutions to ensure they satisfy the original equation:
- For \( x = 18 \):
[tex]\[ 18 + \sqrt{5(18) + 10} = 18 + \sqrt{90 + 10} = 18 + \sqrt{100} = 18 + 10 = 28 \neq 8 \][/tex]
This solution does not satisfy the original equation.
- For \( x = 3 \):
[tex]\[ 3 + \sqrt{5(3) + 10} = 3 + \sqrt{15 + 10} = 3 + \sqrt{25} = 3 + 5 = 8 \][/tex]
This solution satisfies the original equation.
Therefore, \( x = 3 \) is the correct solution.
The correct answer is [tex]\( \boxed{3} \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.