Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

What are the features of the function [tex]g(x) = f(x+4) + 8[/tex]?

- [tex]\(x\)[/tex]-intercept at [tex]\((1, 0)\)[/tex]
- Range of [tex]\([8, \infty)\)[/tex]
- [tex]\(y\)[/tex]-intercept at [tex]\((0, 10)\)[/tex]
- Domain of [tex]\((4, \infty)\)[/tex]
- Vertical asymptote at [tex]\(x = -4\)[/tex]

Sagot :

To determine the features of the function [tex]\( f(x) \)[/tex] given the function [tex]\( g(x) = f(x+4) + 8 \)[/tex] with the following characteristics:

- [tex]\( g(x) \)[/tex] has an [tex]\( x \)[/tex]-intercept at [tex]\((1,0)\)[/tex].
- The range of [tex]\( g(x) \)[/tex] is [tex]\((8, \infty)\)[/tex].
- [tex]\( g(x) \)[/tex] has a [tex]\( y \)[/tex]-intercept at [tex]\((0,10)\)[/tex].
- The domain of [tex]\( g(x) \)[/tex] is [tex]\((4, \infty)\)[/tex].
- [tex]\( g(x) \)[/tex] has a vertical asymptote at [tex]\( x = -4 \)[/tex].

We need to find:

1. The domain of [tex]\( f(x) \)[/tex].
2. The range of [tex]\( f(x) \)[/tex].
3. The [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex].
4. The [tex]\( x \)[/tex]-intercept of [tex]\( f(x) \)[/tex].
5. Any vertical asymptote of [tex]\( f(x) \)[/tex].

### Step-by-Step Solution

1. Domain of [tex]\( f(x) \)[/tex]:

The domain of [tex]\( g(x) \)[/tex] is [tex]\((4, \infty)\)[/tex]. Since [tex]\( g(x) = f(x+4) + 8 \)[/tex], for [tex]\( g(x) \)[/tex] to be defined, [tex]\( x+4 \)[/tex] must be within the domain of [tex]\( f(x) \)[/tex].
[tex]\[ x + 4 > 4 \implies x > 0 \][/tex]
Therefore, the domain of [tex]\( f(x) \)[/tex] is [tex]\((0, \infty)\)[/tex].

2. Range of [tex]\( f(x) \)[/tex]:

The range of [tex]\( g(x) \)[/tex] is [tex]\((8, \infty)\)[/tex]. Since [tex]\( g(x) = f(x+4) + 8 \)[/tex], [tex]\( f(x+4) \)[/tex] must be equal to [tex]\( g(x) - 8 \)[/tex]. Therefore, for [tex]\( g(x) \geq 8 \)[/tex],
[tex]\[ f(x+4) \geq 8 - 8 \implies f(x+4) \geq 0 \][/tex]
Thus, the range of [tex]\( f(x) \)[/tex] is [tex]\([0, \infty)\)[/tex].

3. [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex]:

The [tex]\( y \)[/tex]-intercept of [tex]\( g(x) \)[/tex] occurs when [tex]\( x = 0 \)[/tex], giving [tex]\((0, 10)\)[/tex]. At [tex]\( x = 0 \)[/tex],
[tex]\[ g(0) = f(0+4) + 8 = 10 \][/tex]
Therefore,
[tex]\[ f(4) + 8 = 10 \implies f(4) = 2 \][/tex]
Since [tex]\( f(0) \)[/tex] defines the [tex]\( y \)[/tex]-intercept, and we've substituted [tex]\( x+4 = 0 \implies x = -4 \)[/tex], the [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is [tex]\((0, 2)\)[/tex].

4. [tex]\( x \)[/tex]-intercept of [tex]\( f(x) \)[/tex]:

The [tex]\( x \)[/tex]-intercept of [tex]\( g(x) \)[/tex] is given as [tex]\((1, 0)\)[/tex], meaning [tex]\( g(1) = 0 \)[/tex]. Therefore,
[tex]\[ g(1) = f(1 + 4) + 8 = 0 \][/tex]
Hence,
[tex]\[ f(5) + 8 = 0 \implies f(5) = -8 \quad (\text{which is inconsistent as } f(x) \geq 0) \][/tex]
Actual correction reveals [tex]\( x \)[/tex]-intercept when substitutive for understanding [tex]\( f \)[/tex]'s base intercepting zero according to revised domain transformations.

5. Vertical asymptote of [tex]\( f(x) \)[/tex]:

[tex]\( g(x) \)[/tex] has a vertical asymptote at [tex]\( x = -4 \)[/tex]:
\[
g(-4) = f((-4) + 4) + 8 \rightarrow f(0)\nenver resultant in proposing specific transformations\)
This infers: there is no vertical asymptote observed through [tex]\( f(x) \)[/tex] evaluation.

Thus, the function [tex]\( f(x) \)[/tex] has the following features:

- Domain: [tex]\((0, \infty)\)[/tex]
- Range: [tex]\([0, \infty)\)[/tex]
- [tex]\( y \)[/tex]-intercept: [tex]\((0, 2)\)[/tex]
- [tex]\( x \)[/tex]-intercept: [tex]\((0, 2)\)[/tex]