Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's work through this problem step-by-step to determine the value of the heat transfer coefficient [tex]\( h \)[/tex].
Given:
- Diameter of the cylinder, [tex]\( D = 30 \)[/tex] meters
- Air temperature, [tex]\( T_{\text{air}} = 23^\circ \text{C} \)[/tex]
- Surface temperature of the cylinder, [tex]\( T_{\text{surface}} = 90^\circ \text{C} \)[/tex]
- Heat output, [tex]\( Q = 40 \)[/tex] watts per meter
First, we need to determine the temperature difference between the surface of the cylinder and the air:
[tex]\[ \Delta T = T_{\text{surface}} - T_{\text{air}} \][/tex]
[tex]\[ \Delta T = 90^\circ \text{C} - 23^\circ \text{C} \][/tex]
[tex]\[ \Delta T = 67^\circ \text{C} \][/tex]
Next, we calculate the surface area of the curved part of the cylinder per meter of its length. The cylinder is very long, so we consider the side surface of a unit length (1 meter). The formula for the surface area of a cylinder is:
[tex]\[ A = \pi D L \][/tex]
where [tex]\( D \)[/tex] is the diameter, and [tex]\( L \)[/tex] is the length. For a unit length (1 meter):
[tex]\[ L = 1 \text{ meter} \][/tex]
Therefore,
[tex]\[ A = \pi \times 30 \text{ meters} \times 1 \text{ meter} \][/tex]
[tex]\[ A \approx 94.2478 \text{ square meters} \][/tex]
Now, we use the formula for heat transfer:
[tex]\[ Q = h \times A \times \Delta T \][/tex]
We need to isolate [tex]\( h \)[/tex]:
[tex]\[ h = \frac{Q}{A \times \Delta T} \][/tex]
Substituting the values:
[tex]\[ h = \frac{40 \text{ watts}}{94.2478 \text{ square meters} \times 67^\circ \text{C}} \][/tex]
[tex]\[ h \approx 0.00633452509818489 \text{ watts per square meter per degree Celsius} \][/tex]
Thus, the heat transfer coefficient [tex]\( h \)[/tex] is approximately [tex]\( 0.0063 \ \text{W/m}^2 \cdot ^\circ C \)[/tex].
Given:
- Diameter of the cylinder, [tex]\( D = 30 \)[/tex] meters
- Air temperature, [tex]\( T_{\text{air}} = 23^\circ \text{C} \)[/tex]
- Surface temperature of the cylinder, [tex]\( T_{\text{surface}} = 90^\circ \text{C} \)[/tex]
- Heat output, [tex]\( Q = 40 \)[/tex] watts per meter
First, we need to determine the temperature difference between the surface of the cylinder and the air:
[tex]\[ \Delta T = T_{\text{surface}} - T_{\text{air}} \][/tex]
[tex]\[ \Delta T = 90^\circ \text{C} - 23^\circ \text{C} \][/tex]
[tex]\[ \Delta T = 67^\circ \text{C} \][/tex]
Next, we calculate the surface area of the curved part of the cylinder per meter of its length. The cylinder is very long, so we consider the side surface of a unit length (1 meter). The formula for the surface area of a cylinder is:
[tex]\[ A = \pi D L \][/tex]
where [tex]\( D \)[/tex] is the diameter, and [tex]\( L \)[/tex] is the length. For a unit length (1 meter):
[tex]\[ L = 1 \text{ meter} \][/tex]
Therefore,
[tex]\[ A = \pi \times 30 \text{ meters} \times 1 \text{ meter} \][/tex]
[tex]\[ A \approx 94.2478 \text{ square meters} \][/tex]
Now, we use the formula for heat transfer:
[tex]\[ Q = h \times A \times \Delta T \][/tex]
We need to isolate [tex]\( h \)[/tex]:
[tex]\[ h = \frac{Q}{A \times \Delta T} \][/tex]
Substituting the values:
[tex]\[ h = \frac{40 \text{ watts}}{94.2478 \text{ square meters} \times 67^\circ \text{C}} \][/tex]
[tex]\[ h \approx 0.00633452509818489 \text{ watts per square meter per degree Celsius} \][/tex]
Thus, the heat transfer coefficient [tex]\( h \)[/tex] is approximately [tex]\( 0.0063 \ \text{W/m}^2 \cdot ^\circ C \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.