Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's walk through the step-by-step solution for determining the potential energy and the change in enthalpy for each height. The data provided includes heights ([tex]$h$[/tex]), final temperatures ([tex]$T_f$[/tex]), and changes in temperature ([tex]$\Delta T$[/tex]). We'll use the mass of the water ([tex]$m_w = 1.0 \text{ kg}$[/tex]), the mass of the cylinder ([tex]$m_c = 5.0 \text{ kg}$[/tex]), and the gravitational acceleration ([tex]$g = 9.81 \text{ m/s}^2$[/tex]) to calculate the potential energy at each height.
Step 1: Calculate the potential energy [tex]\( P E_g \)[/tex] for each height.
To find the potential energy, we use the formula:
[tex]\[ P E_g = (m_w + m_c) \cdot g \cdot h \][/tex]
1. For [tex]\( h = 100 \text{ m} \)[/tex]:
[tex]\[ P E_g = (1.0 \text{ kg} + 5.0 \text{ kg}) \cdot 9.81 \text{ m/s}^2 \cdot 100 \text{ m} = 6 \text{ kg} \cdot 9.81 \text{ m/s}^2 \cdot 100 \text{ m} = 5886 \text{ J} = 5.9 \text{ kJ} \][/tex]
2. For [tex]\( h = 200 \text{ m} \)[/tex]:
[tex]\[ P E_g = (1.0 \text{ kg} + 5.0 \text{ kg}) \cdot 9.81 \text{ m/s}^2 \cdot 200 \text{ m} = 6 \text{ kg} \cdot 9.81 \text{ m/s}^2 \cdot 200 \text{ m} = 11772 \text{ J} = 11.8 \text{ kJ} \][/tex]
3. For [tex]\( h = 500 \text{ m} \)[/tex]:
[tex]\[ P E_g = (1.0 \text{ kg} + 5.0 \text{ kg}) \cdot 9.81 \text{ m/s}^2 \cdot 500 \text{ m} = 6 \text{ kg} \cdot 9.81 \text{ m/s}^2 \cdot 500 \text{ m} = 29430 \text{ J} = 29.4 \text{ kJ} \][/tex]
4. For [tex]\( h = 1000 \text{ m} \)[/tex]:
[tex]\[ P E_g = (1.0 \text{ kg} + 5.0 \text{ kg}) \cdot 9.81 \text{ m/s}^2 \cdot 1000 \text{ m} = 6 \text{ kg} \cdot 9.81 \text{ m/s}^2 \cdot 1000 \text{ m} = 58860 \text{ J} = 58.9 \text{ kJ} \][/tex]
Step 2: Fill in the potential energy values [tex]\( P E_g \)[/tex] in the table.
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline h \, (m) & T_f \, (^\circ C) & \Delta T \, (^\circ C) & P E_g \, (kJ) & \Delta H \, (kJ) \\ \hline 100 & 26.17 & 1.17 & 5.9 & \\ \hline 200 & 27.34 & 2.34 & 11.8 & \\ \hline 500 & 30.86 & 5.86 & 29.4 & \\ \hline 1000 & 36.72 & 11.72 & 58.9 & \\ \hline \end{array} \][/tex]
Step 3: Calculate the change in enthalpy [tex]\( \Delta H \)[/tex].
The change in enthalpy [tex]\( \Delta H \)[/tex] can be considered equivalent to the potential energy [tex]\( P E_g \)[/tex] since they represent the energy available for heating the system:
[tex]\[ \Delta H = P E_g \][/tex]
Complete the table:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline h \, (m) & T_f \, (^\circ C) & \Delta T \, (^\circ C) & P E_g \, (kJ) & \Delta H \, (kJ) \\ \hline 100 & 26.17 & 1.17 & 5.9 & 5.9 \\ \hline 200 & 27.34 & 2.34 & 11.8 & 11.8 \\ \hline 500 & 30.86 & 5.86 & 29.4 & 29.4 \\ \hline 1000 & 36.72 & 11.72 & 58.9 & 58.9 \\ \hline \end{array} \][/tex]
Thus, the amount of heat generated for each height can simply be read off the [tex]\( \Delta H \)[/tex] column in the completed table, providing the rounded values for each height.
Step 1: Calculate the potential energy [tex]\( P E_g \)[/tex] for each height.
To find the potential energy, we use the formula:
[tex]\[ P E_g = (m_w + m_c) \cdot g \cdot h \][/tex]
1. For [tex]\( h = 100 \text{ m} \)[/tex]:
[tex]\[ P E_g = (1.0 \text{ kg} + 5.0 \text{ kg}) \cdot 9.81 \text{ m/s}^2 \cdot 100 \text{ m} = 6 \text{ kg} \cdot 9.81 \text{ m/s}^2 \cdot 100 \text{ m} = 5886 \text{ J} = 5.9 \text{ kJ} \][/tex]
2. For [tex]\( h = 200 \text{ m} \)[/tex]:
[tex]\[ P E_g = (1.0 \text{ kg} + 5.0 \text{ kg}) \cdot 9.81 \text{ m/s}^2 \cdot 200 \text{ m} = 6 \text{ kg} \cdot 9.81 \text{ m/s}^2 \cdot 200 \text{ m} = 11772 \text{ J} = 11.8 \text{ kJ} \][/tex]
3. For [tex]\( h = 500 \text{ m} \)[/tex]:
[tex]\[ P E_g = (1.0 \text{ kg} + 5.0 \text{ kg}) \cdot 9.81 \text{ m/s}^2 \cdot 500 \text{ m} = 6 \text{ kg} \cdot 9.81 \text{ m/s}^2 \cdot 500 \text{ m} = 29430 \text{ J} = 29.4 \text{ kJ} \][/tex]
4. For [tex]\( h = 1000 \text{ m} \)[/tex]:
[tex]\[ P E_g = (1.0 \text{ kg} + 5.0 \text{ kg}) \cdot 9.81 \text{ m/s}^2 \cdot 1000 \text{ m} = 6 \text{ kg} \cdot 9.81 \text{ m/s}^2 \cdot 1000 \text{ m} = 58860 \text{ J} = 58.9 \text{ kJ} \][/tex]
Step 2: Fill in the potential energy values [tex]\( P E_g \)[/tex] in the table.
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline h \, (m) & T_f \, (^\circ C) & \Delta T \, (^\circ C) & P E_g \, (kJ) & \Delta H \, (kJ) \\ \hline 100 & 26.17 & 1.17 & 5.9 & \\ \hline 200 & 27.34 & 2.34 & 11.8 & \\ \hline 500 & 30.86 & 5.86 & 29.4 & \\ \hline 1000 & 36.72 & 11.72 & 58.9 & \\ \hline \end{array} \][/tex]
Step 3: Calculate the change in enthalpy [tex]\( \Delta H \)[/tex].
The change in enthalpy [tex]\( \Delta H \)[/tex] can be considered equivalent to the potential energy [tex]\( P E_g \)[/tex] since they represent the energy available for heating the system:
[tex]\[ \Delta H = P E_g \][/tex]
Complete the table:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline h \, (m) & T_f \, (^\circ C) & \Delta T \, (^\circ C) & P E_g \, (kJ) & \Delta H \, (kJ) \\ \hline 100 & 26.17 & 1.17 & 5.9 & 5.9 \\ \hline 200 & 27.34 & 2.34 & 11.8 & 11.8 \\ \hline 500 & 30.86 & 5.86 & 29.4 & 29.4 \\ \hline 1000 & 36.72 & 11.72 & 58.9 & 58.9 \\ \hline \end{array} \][/tex]
Thus, the amount of heat generated for each height can simply be read off the [tex]\( \Delta H \)[/tex] column in the completed table, providing the rounded values for each height.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.