Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To identify the correct equilibrium constant expression for the given chemical equation, [tex]\( 2 NO (g) + O_2 (g) \leftrightarrow 2 NO_2 (g) \)[/tex], let’s go through it step-by-step.
1. Understanding the equilibrium constant expression:
For a general reaction:
[tex]\[ aA + bB \leftrightarrow cC + dD \][/tex]
The equilibrium constant [tex]\( K_{eq} \)[/tex] is given by:
[tex]\[ K_{eq} = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b} \][/tex]
where [tex]\([C]\)[/tex], [tex]\([D]\)[/tex], [tex]\([A]\)[/tex], and [tex]\([B]\)[/tex] represent the molar concentrations of the reactants and products at equilibrium, and [tex]\(a\)[/tex], [tex]\(b\)[/tex], [tex]\(c\)[/tex], and [tex]\(d\)[/tex] are the stoichiometric coefficients.
2. Applying this to our equation:
[tex]\[ 2 NO (g) + O_2 (g) \leftrightarrow 2 NO_2 (g) \][/tex]
Here:
- [tex]\(A = NO\)[/tex] with a coefficient [tex]\(a = 2\)[/tex]
- [tex]\(B = O_2\)[/tex] with a coefficient [tex]\(b = 1\)[/tex]
- [tex]\(C = NO_2\)[/tex] with a coefficient [tex]\(c = 2\)[/tex]
3. Writing the equilibrium constant expression:
According to the general formula, the equilibrium constant [tex]\(K_{eq}\)[/tex] will be:
[tex]\[ K_{eq} = \frac{[NO_2]^2}{[NO]^2 \cdot [O_2]} \][/tex]
This expression shows that the concentrations of the products raised to their stoichiometric coefficients are in the numerator, and the concentrations of the reactants raised to their stoichiometric coefficients are in the denominator.
4. Comparing with the given options:
[tex]\[ \begin{array}{l} K_{eq} = \frac{[NO_2]^2}{[NO]^2 \cdot [O_2]} \\ K_{eq} = \frac{\left[ NO_2\right]^2}{[NO]^2 \cdot [O_2]} \\ K_{eq} = \frac{[NO]}{\left[NO_2\right] [O_2]} \end{array} \][/tex]
5. Identifying the correct expression:
Clearly, the second option (switching to a 1-based index) matches our derived equilibrium constant expression:
[tex]\[ K_{eq} = \frac{\left[NO_2\right]^2}{[NO]^2 \cdot [O_2]} \][/tex]
Thus, the correct equilibrium constant expression is the second option, and its index is 1.
1. Understanding the equilibrium constant expression:
For a general reaction:
[tex]\[ aA + bB \leftrightarrow cC + dD \][/tex]
The equilibrium constant [tex]\( K_{eq} \)[/tex] is given by:
[tex]\[ K_{eq} = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b} \][/tex]
where [tex]\([C]\)[/tex], [tex]\([D]\)[/tex], [tex]\([A]\)[/tex], and [tex]\([B]\)[/tex] represent the molar concentrations of the reactants and products at equilibrium, and [tex]\(a\)[/tex], [tex]\(b\)[/tex], [tex]\(c\)[/tex], and [tex]\(d\)[/tex] are the stoichiometric coefficients.
2. Applying this to our equation:
[tex]\[ 2 NO (g) + O_2 (g) \leftrightarrow 2 NO_2 (g) \][/tex]
Here:
- [tex]\(A = NO\)[/tex] with a coefficient [tex]\(a = 2\)[/tex]
- [tex]\(B = O_2\)[/tex] with a coefficient [tex]\(b = 1\)[/tex]
- [tex]\(C = NO_2\)[/tex] with a coefficient [tex]\(c = 2\)[/tex]
3. Writing the equilibrium constant expression:
According to the general formula, the equilibrium constant [tex]\(K_{eq}\)[/tex] will be:
[tex]\[ K_{eq} = \frac{[NO_2]^2}{[NO]^2 \cdot [O_2]} \][/tex]
This expression shows that the concentrations of the products raised to their stoichiometric coefficients are in the numerator, and the concentrations of the reactants raised to their stoichiometric coefficients are in the denominator.
4. Comparing with the given options:
[tex]\[ \begin{array}{l} K_{eq} = \frac{[NO_2]^2}{[NO]^2 \cdot [O_2]} \\ K_{eq} = \frac{\left[ NO_2\right]^2}{[NO]^2 \cdot [O_2]} \\ K_{eq} = \frac{[NO]}{\left[NO_2\right] [O_2]} \end{array} \][/tex]
5. Identifying the correct expression:
Clearly, the second option (switching to a 1-based index) matches our derived equilibrium constant expression:
[tex]\[ K_{eq} = \frac{\left[NO_2\right]^2}{[NO]^2 \cdot [O_2]} \][/tex]
Thus, the correct equilibrium constant expression is the second option, and its index is 1.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.