Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

1. Simplify the expression: [tex]3a^8b^{-6}[/tex]

Sagot :

Sure, let's break down the given expression step by step to understand and simplify it.

1. Expression: [tex]\( 3 a^8 b^{-6} \)[/tex]

2. Handling the negative exponent:
In mathematics, a negative exponent indicates that the base should be moved to the denominator and the exponent should become positive. So, [tex]\( b^{-6} \)[/tex] means [tex]\( \frac{1}{b^6} \)[/tex].
Hence, the expression [tex]\( 3 a^8 b^{-6} \)[/tex] can be rewritten as:
[tex]\[ 3 a^8 \cdot \frac{1}{b^6} \][/tex]

3. Combining the terms:
Multiply the terms together:
[tex]\[ 3 \cdot a^8 \cdot \frac{1}{b^6} = \frac{3 a^8}{b^6} \][/tex]

So, the simplified form of the given expression [tex]\( 3 a^8 b^{-6} \)[/tex] is:
[tex]\[ \frac{3 a^8}{b^6} \][/tex]

This is the step-by-step solution to the problem!