At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
The equation of the midline for the function [tex]f(x)[/tex] is [tex]y = 6[/tex].
Step-by-step explanation:
The sinusoidal function of the form [tex]y = A_{o}+A\cdot \sin x[/tex] is a periodic function whose range is bounded between [tex]A_{o}-A[/tex] (minimum) and [tex]A_{o}+A[/tex] (maximum). The equation of the midline is a line paralel to the x-axis, that is:
[tex]y = c,\forall\, c\in \mathbb{R}[/tex] (1)
Where [tex]c[/tex] is mean of the upper and lower bounds of the sinusoidal function, that is:
[tex]c = \frac{(A_{o}+A+A_{o}-A)}{2}[/tex]
[tex]c = A_{o}[/tex] (2)
If we know that [tex]y = \frac{1}{2}\cdot \sin x + 6[/tex], then the equation of the midline for the function [tex]y[/tex] is:
[tex]c = A_{0} = 6[/tex]
[tex]y = 6[/tex]
The equation of the midline for the function [tex]f(x)[/tex] is [tex]y = 6[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.