Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
The final speed of the crate is 12.07 m/s.
Explanation:
For the first 10.0 meters, the only force acting on the crate is 225 N, so we can calculate the acceleration as follows:
[tex] F = ma [/tex]
[tex] a = \frac{F}{m} = \frac{225 N}{51.0 kg} = 4.41 m/s^{2} [/tex]
Now, we can calculate the final speed of the crate at the end of 10.0 m:
[tex] v_{f}^{2} = v_{0}^{2} + 2ad_{1} [/tex]
[tex] v_{f} = \sqrt{0 + 2*4.41 m/s^{2}*10.0 m} = 9.39 m/s [/tex]
For the next 10.5 meters we have frictional force:
[tex] F - F_{\mu} = ma [/tex]
[tex] F - \mu mg = ma [/tex]
So, the acceleration is:
[tex] a = \frac{F - \mu mg}{m} = \frac{225 N - 0.17*51.0 kg*9.81 m/s^{2}}{51.0 kg} = 2.74 m/s^{2} [/tex]
The final speed of the crate at the end of 10.0 m will be the initial speed of the following 10.5 meters, so:
[tex] v_{f}^{2} = v_{0}^{2} + 2ad_{2} [/tex]
[tex] v_{f} = \sqrt{(9.39 m/s)^{2} + 2*2.74 m/s^{2}*10.5 m} = 12.07 m/s [/tex]
Therefore, the final speed of the crate after being pulled these 20.5 meters is 12.07 m/s.
I hope it helps you!
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.