Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
The bounded area is 5 + 5/6 square units. (or 35/6 square units)
Step-by-step explanation:
Suppose we want to find the area bounded by two functions f(x) and g(x) in a given interval (x1, x2)
Such that f(x) > g(x) in the given interval.
This area then can be calculated as the integral between x1 and x2 for f(x) - g(x).
We want to find the area bounded by:
f(x) = y = x^2 + 1
g(x) = y = x
x = -1
x = 2
To find this area, we need to f(x) - g(x) between x = -1 and x = 2
This is:
[tex]\int\limits^2_{-1} {(f(x) - g(x))} \, dx[/tex]
[tex]\int\limits^2_{-1} {(x^2 + 1 - x)} \, dx[/tex]
We know that:
[tex]\int\limits^{}_{} {x} \, dx = \frac{x^2}{2}[/tex]
[tex]\int\limits^{}_{} {1} \, dx = x[/tex]
[tex]\int\limits^{}_{} {x^2} \, dx = \frac{x^3}{3}[/tex]
Then our integral is:
[tex]\int\limits^2_{-1} {(x^2 + 1 - x)} \, dx = (\frac{2^3}{2} + 2 - \frac{2^2}{2}) - (\frac{(-1)^3}{3} + (-1) - \frac{(-1)^2}{2} )[/tex]
The right side is equal to:
[tex](4 + 2 - 2) - ( -1/3 - 1 - 1/2) = 4 + 1/3 + 1 + 1/2 = 5 + 2/6 + 3/6 = 5 + 5/6[/tex]
The bounded area is 5 + 5/6 square units.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.