Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Please I need help finding the equation of the parallel line and the perpendicular line.

Please I Need Help Finding The Equation Of The Parallel Line And The Perpendicular Line class=

Sagot :

Answer:

The equation parallel to the given equation and passing through the point (8, 3) is:

[tex]y\text{ = }\frac{5}{2}x\text{ - 17}[/tex]

The equation perpendicular to the given equation and passing through the point (8, 3) is:

[tex]y\text{ = }\frac{-2}{5}x\text{ + }\frac{31}{5}[/tex]Explanations:

The equation of the line parallel to the line y = mx + c and passing through the point (x₁, y₁) is given as:

[tex]y-y_1=m(x-x_1)[/tex]

The equation of the line perpendicular to the line y = mx + c and passing through the point (x₁, y₁) is given as:

[tex]y-y_1\text{ = }\frac{-1}{m}(x-x_1)[/tex]

Now, for the equation:

[tex]\begin{gathered} y\text{ = }\frac{5}{2}x\text{ - 7} \\ m\text{ = }\frac{5}{2} \end{gathered}[/tex]

The line parallel to the equation and passing through the point (8, 3) will be:

[tex]\begin{gathered} y\text{ - 3 = }\frac{5}{2}(x\text{ - 8)} \\ y\text{ - 3 = }\frac{5}{2}x\text{ - 20} \\ y\text{ = }\frac{5}{2}x\text{ - 20 + 3} \\ y\text{ = }\frac{5}{2}x\text{ - 17} \end{gathered}[/tex]

The line perpendicular to the given equation and passing through the point (8, 3) will be:

[tex]\begin{gathered} y\text{ - 3 = }\frac{-2}{5}(x\text{ - 8)} \\ y\text{ - 3 = }\frac{-2}{5}x\text{ + }\frac{16}{5} \\ y\text{ = }\frac{-2}{5}x\text{ + }\frac{16}{5}+3 \\ y\text{ = }\frac{-2}{5}x\text{ + }\frac{31}{5} \end{gathered}[/tex]