Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
SOLUTION
Write out the polynomial given
The first group of the expresion is
[tex]\begin{gathered} 3x^3+4x^2 \\ \text{Then the GCE is } \\ x^2(\frac{3x^3}{x^2}+\frac{4x^2}{x^2}) \\ \text{GCE}=x^2 \end{gathered}[/tex]GCE is x²
For the second group, we have
[tex]\begin{gathered} 75x+100 \\ \text{GCE}=25(\frac{75x}{25}+\frac{100}{25}) \\ \text{GCE}=25 \end{gathered}[/tex]The GCE for the secod group is 25
To factorise completely, we have
[tex]\begin{gathered} 3x^3+4x^2+75x+100 \\ \\ x^2(\frac{3x^3}{x^2}+\frac{4x^2}{x^2})+25(\frac{75x}{25}+\frac{100}{25}) \end{gathered}[/tex]Then by simplification, we have
[tex]\begin{gathered} x^2(3x+4)+25(3x+4) \\ \text{Then, we factor completely to get} \\ (3x+4)(x^2+25) \end{gathered}[/tex]Then factors are (3x +4)(x²+ 25)
To find the real root, we equate each of the factors to zero, hence
[tex]\begin{gathered} (3x+4)(x^2+25)=0 \\ \text{Then} \\ 3x+4=0orx^2+25=0 \\ 3x=-40rx^2=-25 \\ \end{gathered}[/tex]Thus
[tex]\begin{gathered} \frac{3x}{3}=-\frac{4}{3} \\ x=-\frac{4}{3}\text{ is a real root } \\ or\text{ } \\ x^2=-25 \\ \text{take square root} \\ x=\pm_{}\sqrt[]{-25}\text{ not a real root} \end{gathered}[/tex]Therefore, since the root of -25 is a complex number,
The only real root is x = -4/3
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.