Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To prove the length of the hypotenuse [tex]\( c \)[/tex] in a [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle is [tex]\( \sqrt{2} \)[/tex] times the length of each leg, follow these steps:
1. Start with the Pythagorean Theorem:
For a right triangle, the Pythagorean theorem states that [tex]\( a^2 + b^2 = c^2 \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the legs of the triangle and [tex]\( c \)[/tex] is the hypotenuse.
2. Isosceles Right Triangle Properties:
In a [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle, the legs are of equal length. Let's denote the length of each leg by [tex]\( a \)[/tex]. Hence, the equation becomes:
[tex]\[ a^2 + a^2 = c^2 \][/tex]
3. Combine Like Terms:
[tex]\[ 2a^2 = c^2 \][/tex]
4. Solve for [tex]\( c^2 \)[/tex]:
To isolate [tex]\( a^2 \)[/tex], divide both sides of the equation by 2:
[tex]\[ a^2 = \frac{c^2}{2} \][/tex]
5. Take the Principal Square Root:
Determine the principal square root of both sides of the equation:
[tex]\[ a = \frac{c}{\sqrt{2}} \][/tex]
Since we want to express [tex]\( c \)[/tex] in terms of [tex]\( a \)[/tex]:
[tex]\[ c = a \times \sqrt{2} \][/tex]
6. Conclusion:
We have shown that the length of the hypotenuse [tex]\( c \)[/tex] is [tex]\( \sqrt{2} \)[/tex] times the length of each leg [tex]\( a \)[/tex].
In summary, the length of the hypotenuse in a [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle is indeed [tex]\( \sqrt{2} \)[/tex] times the length of each leg.
1. Start with the Pythagorean Theorem:
For a right triangle, the Pythagorean theorem states that [tex]\( a^2 + b^2 = c^2 \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the legs of the triangle and [tex]\( c \)[/tex] is the hypotenuse.
2. Isosceles Right Triangle Properties:
In a [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle, the legs are of equal length. Let's denote the length of each leg by [tex]\( a \)[/tex]. Hence, the equation becomes:
[tex]\[ a^2 + a^2 = c^2 \][/tex]
3. Combine Like Terms:
[tex]\[ 2a^2 = c^2 \][/tex]
4. Solve for [tex]\( c^2 \)[/tex]:
To isolate [tex]\( a^2 \)[/tex], divide both sides of the equation by 2:
[tex]\[ a^2 = \frac{c^2}{2} \][/tex]
5. Take the Principal Square Root:
Determine the principal square root of both sides of the equation:
[tex]\[ a = \frac{c}{\sqrt{2}} \][/tex]
Since we want to express [tex]\( c \)[/tex] in terms of [tex]\( a \)[/tex]:
[tex]\[ c = a \times \sqrt{2} \][/tex]
6. Conclusion:
We have shown that the length of the hypotenuse [tex]\( c \)[/tex] is [tex]\( \sqrt{2} \)[/tex] times the length of each leg [tex]\( a \)[/tex].
In summary, the length of the hypotenuse in a [tex]\( 45^\circ-45^\circ-90^\circ \)[/tex] triangle is indeed [tex]\( \sqrt{2} \)[/tex] times the length of each leg.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.